Skip to main content

Advertisement

Log in

Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

An Erratum to this article was published on 04 December 2008

Abstract

Bacteria of the genus Azospirillum are considered to be plant-growth promoting bacteria (PGPR) and stimulate plant growth directly either by synthesising phyto-hormones or by promoting nutrition by the process of biological nitrogen fixation (BNF). Although this genus extensively studied, the effects of inoculation and the possible BNF contribution of the Azospirillum amazonense specie are very scarce. The aim of this study was to isolate, characterise and evaluate auxin production and nitrogenase activity of this species and to select, by inoculation of rice plants, promising isolates based on their ability to improve plant growth, yield and the BNF contribution. One hundred and ten isolates obtained from rice were characterised and grouped according to colony features. Forty-two isolates, confirmed as A. amazonense by the fluorescent in situ hybridization (FISH) technique, were tested for auxin production and nitrogenase activity in vitro. Subsequently plant growth promotion related to plant nutrition effect was evaluated, in vitro and in greenhouse experiments. The BNF contribution to plant growth was evaluated using the 15N isotope dilution technique. All A. amazonense strains tested produced indoles, but only 10% of them showed high production, above 1.33 μM mg protein−1. The nitrogenase activity also was variable and only 9% of isolates showed high nitrogenase activity and the majority (54%) exhibited a low potential. The inoculation of selected strains in rice under gnotobiotic conditions reduced the growth of root and aerial part when compared to the control, showing the negative effects of excess of phytohormone accumulation in the medium. However, in the greenhouse experiment, inoculation of strains of A. amazonense increased grain dry matter accumulation (7 to 11.6%), the number of panicles (3 to 18.6%) and nitrogen accumulation at grain maturation (3.5 to 18.5%). BNF contributions up to 27% were observed for A. amazonense Y2 (wild type strain). The data presented here is the first report that the PGPR effect of A. amazonense for rice plants grown under greenhouse conditions is mainly due the BNF contribution as measured by 15N isotope dilution technique, in contrast to the hormonal effect observed with other Azospirillum species studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amann R, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    PubMed  CAS  Google Scholar 

  • Baldani JI (1984) Ocorrência e caracterização de Azospirillum amazonense em comparação com as outras espécies deste gênero em raízes de milho, sorgo e arroz. Dissertação (Mestrado), Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil, 110 p.

  • Baldani JI, Baldani VLD (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Ci 77:549–579

    CAS  Google Scholar 

  • Baldani JI, Baldani VLD, Seldin L, Dobereiner J (1986) Characterization of Herbaspirillum seropedicae gen. nov. sp. nov. a root associated nitrogen fixing bacterium. Int J Syst Bacteriol 36:86–93

    Google Scholar 

  • Baldani JI, Caruso L, Baldani VLD, Goi SR, Döbereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  • Baldani VLD (1996) Efeito da inoculação de Herbaspirillum spp. no processo de colonização e infecção de plantas de arroz e ocorrência e caracterização parcial de uma nova bactéria diazotrófica. Dissertação (Doutorado) Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil, 262 p.

  • Baldani VLD, Baldani JI, Döbereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491

    Article  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  PubMed  CAS  Google Scholar 

  • Boddey RM (1987) Methods for quantification of nitrogen fixation associated with gramineae. CRC Crit Rev Plant Sci 6:209–266

    Article  CAS  Google Scholar 

  • Boddey RM, Oliveira OC, Alves BJR, Urquiaga S (1995a) Field application of the 15N isotope dilution technique for the reliable quantification of plant-associated biological nitrogen fixation. Nutr Cycl Agroecosyst 42:77–87

    CAS  Google Scholar 

  • Boddey RM, Oliveira OC, Urquiaga S, Reis VM, Olivares FL, Baldani VLD, Döbereiner J (1995b) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209

    Article  CAS  Google Scholar 

  • Bremmer JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis: chemical and microbiological properties. Part 2. 2nd edn. American Society of Agronomy, Madison, pp 595–624

    Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    Article  PubMed  Google Scholar 

  • Crestana S, Guimarães MF, Jorge LAC, Ralisch R, Tozzi CL, Torre A, Vaz CMP (1994) Avaliação da distribuição de raízes no solo auxiliada por processamento de imagens digitais. Rev Bras Ci Solo 18:365–372

    Google Scholar 

  • Döbereiner J, Baldani VLD, Baldani JI (1995) Como isolar e identificar bactérias diazotróficas em plantas não leguminosas. EMBRAPA-SPI, Brasília, DF, 60 pp

  • dos Reis FB Jr, Silva LG, Reis VM, Döbereiner J (2000) Ocorrência de bactérias diazotróficas em diferentes genótipos de cana-de-açúcar. Pesq Agrop Bras 35:985–994

    Google Scholar 

  • dos Reis FB Jr, Silva MF, Teixeira KR dos S, Urquiaga S, Reis VM (2004) Identificação de isolados de Azospirillum amazonense associados à Brachiaria spp. em diferentes épocas e condições de cultivo e produção de fitorhomônio pela bactéria. Rev Bras Ci Solo 28:103–113

    Google Scholar 

  • Embrapa Serviço Nacional de Levantamento e Conservação de Solos (1979) Manual de métodos de análise de solos. n.p.

  • Eskew DL, Focht DD, Ting IP (1977) Nitrogen fixation, denitrification and pleomorphic growth in highly pigmented Spirillum lipoferum. Can J Microbiol 34:582–585

    CAS  Google Scholar 

  • Ferreira JS, Sabino DCC, Guimarães SL, Baldani JI, Baldani VLD (2003) Seleção de veículos para o preparo de inoculante com bactérias diazotróficas para arroz inundado. Agronomia 37:6–12

    Google Scholar 

  • Han SO, New PB (1998) Variation in nitrogen fixing ability among natural isolates of Azospirillum. Microbial Ecol 36:193–201

    Article  CAS  Google Scholar 

  • Hartmann A, Fu H, Burris RH (1986) Regulation of nitrogenase activity by ammonium chloride in Azospirillum spp. J Bacteriol 165:864–870

    PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. University of California, Berkeley, p 39 (Circular, 347).

  • Jensen ES, Nielsen HH (2003) How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil 252:177–186

    Article  CAS  Google Scholar 

  • Jorge LAC, Crestana S (1996) SIARCS 3.0: novo aplicativo para análise de imagens digitais Aplicado a ciência do solo. In: Congresso Latino de Ciência do Solo, 13, 1996, Águas de Lindóia, SP. Solo Suelo 96. Sociedade Brasileira de Ciência do Solo, Campinas, pp 5. CD-ROM

  • Kloos K, Mergel A, Rosch C, Bothe H (2001) Denitrification within the genus Azospirillum and other associative bacteria. Aust J Plant Physiol 28:991–998

    Google Scholar 

  • Ladha JK, Reddy PM (2003) Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil 252:151–167

    Article  CAS  Google Scholar 

  • Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol 8:298–300

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Magalhães FM, Baldani JI, Souto SM, Kuykendall JR, Döbereiner J (1983) A new acid-tolerant Azospirillum species. An Acad Bras Ci 55:417–430

    Google Scholar 

  • Malarvizhi P, Ladha JK (1999) Influence of available nitrogen and rice genotype on associative dinitrogen fixation. Soil Sci Soc Am J 63:93–99

    Article  CAS  Google Scholar 

  • Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Google Scholar 

  • Mascarua-Esparza MA, Villa-Gonzalez R, Caballero-Mellado J (1988) Acetylene reduction and indoleacetic acid production by Azospirillum isolates from cactaceous plants. Plant Soil 106:91–95

    Article  CAS  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum—an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Patten CL, Holguin G, Penrose DM, Glick BR (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, p 276

    Google Scholar 

  • Radwan TEE, Mohamed ZK, Reis VM (2002) Production of indole-3-acetic acid by different strains of Azospirillum and Herbaspirillum spp. Symbiosis 32:39–54

    CAS  Google Scholar 

  • Radwan TEE, Mohamed ZK, Reis VM (2004) Efeito da inoculação de Azospirillum e Herbaspirillum na produção de compostos indólicos em plântulas de trigo e arroz. Pesq Agrop Bras 39:987–994

    Google Scholar 

  • Ramos DP, Castro AF, Camargo MN (1973) Levantamento de solos da área da Universidade Federal Rural do Rio de Janeiro. Pesq Agrop Bras, Sér Agronomia 8:1–27

    CAS  Google Scholar 

  • Ramos MG, Villatoro MAA, Urquiaga S, Alves BJR, Boddey RM (2001) Quantification of the contribution of biological nitrogen fixation to tropical green manure crops and the residual benefit to a subsequent maize crop using 15N-isotope techniques. J Biotechnol 91:105–115

    Article  PubMed  CAS  Google Scholar 

  • Reis VM, Baldani JI, Baldani VLD, Döbereiner J (2000) Biological dinitrogen fixation in gramineae and palm trees. Plant Sci 19:227–274

    CAS  Google Scholar 

  • Rodrigues LS, Baldani VLD, Baldani JI (2006) Diversidade de bactérias diazotróficas endofíticas dos gêneros Herbaspirillum e Burkholderia na cultura do arroz inundado. Pesq Agrop Bras 41:275–284

    Google Scholar 

  • Sarwar M, Kremer RJ (1995) Determination of bacterially derived auxins using a microplate method. Lett Appl Microbiol 20:282–285

    Article  CAS  Google Scholar 

  • Scott TK (1972) Auxins and roots. Annu Rev Plant Physiol 23:235–258

    Article  CAS  Google Scholar 

  • Shrestha RK, Ladha JK (1996) Genotypic variation in promotion of rice dinitrogen fixation as determined by nitrogen-15 dilution. Soil Sci Soc Am J 60:1815–1821

    Article  CAS  Google Scholar 

  • Snedecor GW, Cochran GW (1980) Statistical methods, 7th edn. Iowa State University Press, Ames, Iowa, p 507

    Google Scholar 

  • Steendhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  Google Scholar 

  • Stoffels M, Castellanos T, Hartmann A (2001) Design and application of new 16S rRNA-targeted oligonucleotide probes for the Azospirillum-Skermanella-Rhodocista-Cluster. Syst Appl Microbiol 244:83–97

    Article  Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University Federal Rural do Rio de Janeiro (UFRRJ) where parts of the M. Sc. and PhD theses of the first and second authors, respectively, were developed. The authors would like to thanks the CAPES–Program of support for a Nucleus of Excellency (Pronex II), grant 76 97 1051 00. The research project was partly supported by the Brazilian–German scientific and technological research cooperation (project BRA-ENV 34) that allowed the development of the probes used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Massena Reis.

Additional information

Responsible Editor: Euan K. James.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11104-008-9840-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, E.P., Rodrigues, L.S., de Oliveira, A.L.M. et al. Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil 302, 249–261 (2008). https://doi.org/10.1007/s11104-007-9476-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-007-9476-1

Keywords

Navigation