Skip to main content
Log in

The dual function of elicitors and effectors from insects: reviewing the ‘arms race’ against plant defenses

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key Message

This review provides an overview, analysis, and reflection on insect elicitors and effectors (particularly from oral secretions) in the context of the ‘arms race’ with host plants.

Abstract

Following injury by an insect herbivore, plants rapidly activate induced defenses that may directly or indirectly affect the insect. Such defense pathways are influenced by a multitude of factors; however, cues from the insect’s oral secretions are perhaps the most well studied mediators of such plant responses. The relationship between plants and their insect herbivores is often termed an ‘evolutionary arms race’ of strategies for each organism to either overcome defenses or to avoid attack. However, these compounds that can elicit a plant defense response that is detrimental to the insect may also benefit the physiology or metabolism of an insect species. Indeed, several insect elicitors of plant defenses (such as the fatty acid-amino acid conjugate, volicitin) are known to enhance an insect’s ability to obtain nutritionally important compounds from plant tissue. Here we re-examine the well-known elicitors and effectors from chewing insects to demonstrate not only our incomplete understanding of the specific biochemical and molecular cascades involved in these interactions but also to consider the role of these compounds for the insect species itself. Finally, this overview discusses opportunities for research in the field of plant-insect interactions by utilizing tools such as genomics and proteomics to integrate the future study of these interactions through ecological, physiological, and evolutionary disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Acevedo FE, Rivera-Vega LJ, Chung SH, Ray S, Felton GW (2015) Cues from chewing insects — the intersection of DAMPs, HAMPs, MAMPs and effectors. Curr Opin Plant Biol 26:80–86. https://doi.org/10.1016/j.pbi.2015.05.029

    Article  CAS  PubMed  Google Scholar 

  • Acevedo FE, Peiffer M, Tan CW, Stanley BA, Stanley A, Wang J, Jones AG, Hoover K, Rosa C, Luthe D, Felton G (2017) Fall armyworm-associated gut bacteria modulate plant defense responses. Mol Plant-Microbe Interact 30(2):127–137

    Article  CAS  PubMed  Google Scholar 

  • Acevedo FE, Smith P, Peiffer M, Helms A, Tooker J, Felton GW (2019) Phytohormones in fall armyworm saliva modulate defense responses in plants. J Chem Ecol 45(7):598–609

    Article  CAS  PubMed  Google Scholar 

  • Alborn HT, Turlings TCJ, Jones T, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276(5314):945–949

    Article  CAS  Google Scholar 

  • Alborn HT, Hansen TV, Jones TH, Bennett DC, Tumlinson JH, Schmelz EA, Teal PE (2007a) Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proc Natl Acad Sci 104(32):12976–12981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alborn HT, Hansen TV, Jones TH, Bennett DC, Tumlinson JH, Schmelz EA, Teal PE (2007b) Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proc Nat Acad Sci Aug 104(32):12976–12981

    Article  CAS  Google Scholar 

  • Allmann S, Baldwin IT (2010) Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science 329(5995):1075–1078

    Article  CAS  PubMed  Google Scholar 

  • Allmann S, Späthe A, Bisch-Knaden S, Kallenbach M, Schuurink RC, Reinecke A, Sachse S, Baldwin IT, Hansson B (2012) Isomerization of green leaf volatiles alters the behavioral responses of female Manduca moths. Dissertation, University of Amsterdam

  • Ameye M, Allmann S, Verwaeren J, Smagghe G, Haesaert G, Schuurink RC, Audenaert K (2018) Green leaf volatile production by plants: a meta-analysis. New Phytol 220(3):666–683

    Article  CAS  PubMed  Google Scholar 

  • Arimura GI (2020) Making sense of the way plants sense herbivores. Trends in Plant Sci 26(3):288–298

    Article  CAS  Google Scholar 

  • Arimura GI, Ozawa R, Kugimiya S, Takabayashi J, Bohlmann J (2004) Herbivore-induced defense response in a model legume. Two-spotted spider mites induce emission of (E)-β-ocimene and transcript accumulation of (E)-β-ocimene synthase in Lotus japonicus. Plant Phys 135(4):1976–1983

    Article  CAS  Google Scholar 

  • Bede JC, Musser RO, Felton GW, Korth KL (2006) Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis. Plant Mol Biol 60(4):519–531

    Article  CAS  PubMed  Google Scholar 

  • Beyaert I, Köpke D, Stiller J, Hammerbacher A, Yoneya K, Schmidt A, Gershenzon J, Hilker M (2012) Can insect egg deposition ‘warn’a plant of future feeding damage by herbivorous larvae? Proc R Soc B Biol Sci 279(1726):101–108

    Article  Google Scholar 

  • Bittner N, Trauer-Kizilelma U, Hilker M (2017) Early plant defence against insect attack: involvement of reactive oxygen species in plant responses to insect egg deposition. Planta 245(5):993–1007

    Article  CAS  PubMed  Google Scholar 

  • Bittner N, Hundacker J, Achotegui-Castells A, Anderbrant O, Hilker M (2019) Defense of Scots pine against sawfly eggs (Diprion pini) is primed by exposure to sawfly sex pheromones. Proc Natl Acad Sci 116(49):24668–24675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaventure G, VanDoorn A, Baldwin IT (2011) Herbivore-associated elicitors: FAC signaling and metabolism. Trends Plant Sci 16(6):294–299

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester HJ, Verstappen FW, Posthumus MA, Dicke M (1999) Spider mite-induced (3S)-(E)-nerolidol synthase activity in cucumber and lima bean. The first dedicated step in acyclic C11-homoterpene biosynthesis. Plant Phys 121(1):173–180

    Article  CAS  Google Scholar 

  • Bruessow F, Gouhier-Darimont C, Buchala A, Metraux JP, Reymond P (2010) Insect eggs suppress plant defence against chewing herbivores. Plant J 62(5):876–885

    Article  CAS  PubMed  Google Scholar 

  • Chen MS (2008) Inducible direct plant defense against insect herbivores: a review. Insect Sci 15(2):101–114

    Article  CAS  Google Scholar 

  • Chen CY, Mao YB (2020) Research advances in plant–insect molecular interaction. F1000Research. https://doi.org/10.12688/f1000research.21502.1

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CY, Liu YQ, Song WM, Chen DY, Chen FY, Chen XY, Chen ZW, Ge SX, Wang CZ, Zhan S, Chen XY (2019) An effector from cotton bollworm oral secretion impairs host plant defense signaling. Proc Natl Acad Sci 116(28):14331–14338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, Liang Y, Lee SY, Stacy G (2014) Identification of a plant receptor of extracelluar ATP. Science 343(6168):290–294

    Article  CAS  PubMed  Google Scholar 

  • Chuang WP, Ray S, Acevedo FE, Peiffer M, Felton GW, Luthe DS (2014) Herbivore cues from the fall armyworm (Spodoptera frugiperda) larvae trigger direct defenses in maize. Mol Plant-Microbe Interac 27(5):461–470

    Article  CAS  Google Scholar 

  • Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JF, Hoover K, Luthe DS, Felton GW (2013) Herbivore exploits orally secreted bacteria to suppress plant defenses. PNAS 110(39):15728–15733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper LD, Doss RP, Price R, Peterson K, Oliver JE (2005) Application of Bruchin B to pea pods results in the up-regulation of CYP93C18, a putative isoflavone synthase gene, and an increase in the level of pisatin, an isoflavone phytoalexin. J Exp Bot 56(414):1229–1237

    Article  CAS  PubMed  Google Scholar 

  • Cruickshank IAM (1962) Studies on phytoalexins IV. The antimicrobial spectrum of pisatin. Aust J Biol Sci 15(1):147–159

    Article  CAS  Google Scholar 

  • Delphia CM, Mescher MC, Felton G, Moraes CMD (2006) The role of insect-derived cues in eliciting indirect plant defenses in tobacco, Nicotiana tabacum. Plant Signal Behav 1(5):243–250

    Article  PubMed  PubMed Central  Google Scholar 

  • Delphia CM, Mescher MC, De Moraes CM (2007) Induction of plant volatiles by herbivores with different feeding habits and the effects of induced defenses on host-plant selection by thrips. J Chem Ecol 33(5):997–1012

    Article  CAS  PubMed  Google Scholar 

  • Diezel C, von Dahl CC, Gaquerel E, Baldwin IT (2009) Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Phys 150(3):1576–1586

    Article  CAS  Google Scholar 

  • Doss RP (2005) Treatment of pea pods with Bruchin B results in up-regulation of a gene similar to MtN19. Plant Phys Biochem 43(3):225–231

    Article  CAS  Google Scholar 

  • Doss RP, Oliver JE, Proebsting WM, Potter SW, Kuy S, Clement SL, Williamson RT, Carney JR, DeVilbiss ED (2000) Bruchins: insect-derived plant regulators that stimulate neoplasm formation. Proc Nat Acad Sci 97(11):6218–6223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichenseer H, Mathews MC, Bi JL, Murphy JB, Felton GW (1999) Salivary glucose oxidase: multifunctional roles for Helicoverpa zea? Arch Insect Biochem Phys Publ Collab Entomol Soc Am 42(1):99–109

    Article  CAS  Google Scholar 

  • Eichenseer H, Mathews MC, Powell JS, Felton GW (2010) Survey of a salivary effector in caterpillars: glucose oxidase variation and correlation with host range. J Chem Ecol 36(8):885–897

    Article  CAS  PubMed  Google Scholar 

  • Elzinga DA, De Vos M, Jander G (2014) Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein. Mol Plant Microbe Interact 27(7):747–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelberth J, Engelberth M (2020) Variability in the capacity to produce damage-induced aldehyde green leaf volatiles among different plant species provides novel insights into biosynthetic diversity. Plants 9(2):213

    Article  CAS  PubMed Central  Google Scholar 

  • Erb M, Reymond P (2019) Molecular interactions between plants and insect herbivores. Annu Rev Plant Bio 70:527–557

    Article  CAS  Google Scholar 

  • Felton GW (2008) Caterpillar secretions and induced plant responses. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Dordrecht, pp 369–387

    Chapter  Google Scholar 

  • Felton GW, Tumlinson JH (2008) Plant–insect dialogs: complex interactions at the plant–insect interface. Curr Op Plant Bio 11(4):457–463

    Article  CAS  Google Scholar 

  • Felton GW, Chung SH, Hernandez MGE, Louis J, Peiffer M, Tian D (2018) Herbivore oral secretions are the first line of protection against plant-induced defenses. Annu Plant Rev 47:37–76

    Article  Google Scholar 

  • Gomez SK, Cox MM, Bede JC, Inoue K, Alborn HT, Tumlinson JH, Korth KL (2005) Lepidopteran herbivory and oral factors induce transcripts encoding novel terpene synthases in Medicago truncatula. Arch Insect Biochem Phys Publ Collab Entomol Soc Am 58(2):114–127

    Article  CAS  Google Scholar 

  • Grant JB (2006) Diversification of gut morphology in caterpillars is associated with defensive behavior. J Exp Bio 209(15):3018–3024

    Article  Google Scholar 

  • Halitschke R, Schittko U, Pohnert G, Boland W, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Phys 125(2):711–717

    Article  CAS  Google Scholar 

  • Hammerschmidt R, Nicholson RL (1999) A survey of plant defense responses to pathogens. In: Agrawal AA, Tuzun S, Bent E (eds) Induced plant defenses against pathogens and herbivores: biochemistry, ecology, and agriculture. APS Press, St. Paul, pp 55–71

    Google Scholar 

  • Helms AM, De Moraes CM, Tooker JF, Mescher MC (2013) Exposure of Solidago altissima plants to volatile emissions of an insect antagonist (Eurosta solidaginis) deters subsequent herbivory. Proc Nat Acad Sci 110(1):199–204

    Article  CAS  PubMed  Google Scholar 

  • Helms AM, De Moraes CM, Mescher MC, Tooker JF (2014) The volatile emission of Eurosta solidaginis primes herbivore-induced volatile production in Solidago altissima and does not directly deter insect feeding. BMC Plant Biol 14(1):1–10

    Article  Google Scholar 

  • Helms AM, De Moraes CM, Tröger A, Alborn HT, Francke W, Tooker JF, Mescher MC (2017) Identification of an insect-produced olfactory cue that primes plant defenses. Nat Commun 8(1):1–9

    Article  CAS  Google Scholar 

  • Hilker M, Stein C, Schröder R, Varama M, Mumm R (2005) Insect egg deposition induces defense responses in Pinus sylvestris: characterization of the elicitor. J Exp Biol 208(10):1849–1854

    Article  PubMed  Google Scholar 

  • Hopke J, Donath J, Blechert S, Boland W (1994) Herbivore-induced volatiles: the emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a β-glucosidase and jasmonic acid. Febs Lett 352(2):146–150

    Article  CAS  PubMed  Google Scholar 

  • Hu YH, Leung DW, Kang L, Wang CZ (2008) Diet factors responsible for the change of the glucose oxidase activity in labial salivary glands of Helicoverpa armigera. Arch Insect Biochem Phys Publ Collab Entomol Soc Am 68(2):113–121

    Article  CAS  Google Scholar 

  • Iida J, Desaki Y, Hata K, Uemura T, Yasuno A, Islam M, Maffei ME, Ozawa R, Nakajima T, Galis I, Arimura GI (2019) Tetranins: new putative spider mite elicitors of host plant defense. New Phytol 224(2):875–885

    Article  CAS  PubMed  Google Scholar 

  • Ji R, Fu J, Shi Y, Li J, Jing M, Wang L, Yang S, Tian T, Wang L, Ju J, Guo H (2021) Vitellogenin from planthopper oral secretion acts as a novel effector to impair plant defenses. New Phys. https://doi.org/10.1111/nph.17620

    Article  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones AC, Seidl-Adams I, Engelberth J, Hunter CT, Alborn H, Tumlinson JH (2019) Herbivorous caterpillars can utilize three mechanisms to alter green leaf volatile emission. Environ Entomol 48(2):419–425

    Article  CAS  PubMed  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Köpke D, Schröder R, Fischer HM, Gershenzon J, Hilker M, Schmidt A (2008) Does egg deposition by herbivorous pine sawflies affect transcription of sesquiterpene synthases in pine? Planta 228(3):427–438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytol 171(2):249–269

    Article  CAS  PubMed  Google Scholar 

  • Lin PA, Peiffer M, Felton GW (2020) Induction of defensive proteins in Solanaceae by salivary glucose oxidase of Helicoverpa zea caterpillars and consequences for larval performance. Arthropod-Plant Interact 14:317–325

    Article  Google Scholar 

  • Lin PA, Chen Y, Chaverra-Rodriguez D, Heu CC, Zainuddin NB, Sidhu JS, Peiffer M, Tan CW, Helms A, Kim D, Ali J (2021) Silencing the alarm: an insect salivary enzyme closes plant stomata and inhibits volatile release. New Phytol 230:793–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindroth RL (1988) Hydrolysis of phenolic glycosides by midgut β-glucosidases in Papilio glaucus subspecies. Insect Biochem 18(8):789–792

    Article  CAS  Google Scholar 

  • Lindroth RL (1989) Host plant alteration of detoxication activity in Papilio glaucus glaucus. Entomol Exp Appl 50(1):29–35

    Article  CAS  Google Scholar 

  • Liu F, Cui L, Cox-Foster D, Felton GW (2004) Characterization of a salivary lysozyme in larval Helicoverpa zea. J Chem Ecol 30(12):2439–2457

    Article  CAS  PubMed  Google Scholar 

  • Louis J, Peiffer M, Ray S, Luthe DS, Felton GW (2013) Host-specific salivary elicitor (s) of European corn borer induce defenses in tomato and maize. New Phytol 199(1):66–73

    Article  CAS  PubMed  Google Scholar 

  • Maffei M, Bossi S, Spiteller D, Mithöfer A, Boland W (2004) Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components. Plant Phys 134(4):1752–1762

    Article  CAS  Google Scholar 

  • Magalhães DM, Da Silva ITFA, Borges M, Laumann RA, Blassioli-Moraes MC (2019) Anthonomus grandis aggregation pheromone induces cotton indirect defence and attracts the parasitic wasp Bracon vulgaris. J Exp Bot 70(6):1891–1901

    Article  PubMed  CAS  Google Scholar 

  • Malik G, Chaturvedi R, Hooda S (2021) Role of herbivore-associated molecular patterns (HAMPs) in modulating plant defenses. In: Singh IK, Singh A (eds) Plant-Pest Interact Mol Mech Chem Ecol. Springer, Singapore, pp 1–29

    Google Scholar 

  • Matsui K, Koeduka T (2016) Green leaf volatiles in plant signaling and response. In: Nakamura Y, Li-Beisson Y (eds) Lipids in plant and algae development. Springer, Berlin, pp 427–443

    Chapter  Google Scholar 

  • Mattiacci L, Dicke M, Posthumus MA (1995) beta-Glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc Natl Acad Sci 92(6):2036–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkx-Jacques M, Bede JC (2005) Influence of diet on the larval beet armyworm, Spodoptera exigua, glucose oxidase activity. J Insect Sci 5(1):48

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikó I, Rahman SR, Jones AC, Townley MA, Gominho B, Paudel S, Stupski SD, Hines HM, Schilder RJ (2019) From spinning silk to spreading saliva: mouthpart remodeling in Manduca sexta (Lepidoptera: Sphingidae). Insect Syst Divers 3(6):2

    Article  Google Scholar 

  • Mithöfer A, Boland W (2008) Recognition of herbivory-associated molecular patterns. Plant Phys 146(3):825–831

    Article  CAS  Google Scholar 

  • Mori N, Yoshinaga N (2011) Function and evolutionary diversity of fatty acid amino acid conjugates in insects. J Plant Interact 6(2–3):103–107

    Article  CAS  Google Scholar 

  • Mori N, Alborn HT, Teal PE, Tumlinson JH (2001) Enzymatic decomposition of elicitors of plant volatiles in Heliothis virescens and Helicoverpa zea. J Insect Phys 47(7):749–757

    Article  CAS  Google Scholar 

  • Mori N, Yoshinaga N, Sawada Y, Fukui M, Shimoda M, Fujisaki K, Nishida R, Kuwahara Y (2003) Identification of volicitin-related compounds from the regurgitant of lepidopteran caterpillars. Biosci Biotech Biochem 67(5):1168–1171

    Article  CAS  Google Scholar 

  • Morishima I, Suginaka S, Bougaki T, Inoue M, Ueno T (1988) Induction and partial characterization of antibacterial proteins in the hemolymph of the silkworm, Bombyx mori. Agric Bio Chem 52(4):929–934

    CAS  Google Scholar 

  • Mumm R, Schrank K, Wegener R, Schulz S, Hilker M (2003) Chemical analysis of volatiles emitted by Pinus sylvestris after induction by insect oviposition. J Chem Ecol 29(5):1235–1252

    Article  CAS  PubMed  Google Scholar 

  • Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G, Murphy JB, Felton GW (2002) Caterpillar saliva beats plant defenses. Nature 416(6881):599–600

    Article  CAS  PubMed  Google Scholar 

  • Musser RO, Cipollini DF, Hum-Musser SM, Williams SA, Brown JK, Felton GW (2005) Evidence that the caterpillar salivary enzyme glucose oxidase provides herbivore offense in solanaceous plants. Arch Insect Biochem Phys Publ Collab Entomol Soc Am 58(2):128–137

    Article  CAS  Google Scholar 

  • Musser RO, Kwon HS, Williams SA, White CJ, Romano MA, Holt SM, Bradbury S, Brown JK, Felton GW (2005) Evidence that caterpillar labial saliva suppresses infectivity of potential bacterial pathogens. Arch Insect Biochem Phys Publ Collab Entomol Soc Am 58(2):138–144

    Article  CAS  Google Scholar 

  • Musser RO, Farmer E, Peiffer M, Williams SA, Felton GW (2006) Ablation of caterpillar labial salivary glands: technique for determining the role of saliva in insect–plant interactions. J Chem Ecol 32(5):981–992

    Article  CAS  PubMed  Google Scholar 

  • Oliver JE, Doss RP, Williamson RT, Carney JR, DeVilbiss ED (2000) Bruchins—mitogenic 3-(hydroxypropanoyl) esters of long chain diols from weevils of the Bruchidae. Tetrahedron 56(39):7633–7641

    Article  CAS  Google Scholar 

  • Paré PW, Tumlinson JH (1997) De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Phys 114(4):1161–1167

    Article  Google Scholar 

  • Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Phys 121(2):325–332

    Article  Google Scholar 

  • Peiffer M, Felton GW (2005) The host plant as a factor in the synthesis and secretion of salivary glucose oxidase in larval Helicoverpa zea. Arch Insect Biochem Phys Publ Collab Entomol Soc Am 58(2):106–113

    Article  CAS  Google Scholar 

  • Pohnert G, Jung V, Haukioja E, Lempa K, Boland W (1999) New fatty acid amides from regurgitant of lepidopteran (Noctuidae, Geometridae) caterpillars. Tetrahedron 55(37):11275–11280

    Article  CAS  Google Scholar 

  • Prajapati VK, Varma M, Vadassery J (2020) In silico identification of effector proteins from generalist herbivore Spodoptera litura. BMC Genom 21(1):1–16

    Article  CAS  Google Scholar 

  • Ray S, Gaffor I, Acevedo FE, Helms A, Chuang WP, Tooker J, Felton GW, Luthe DS (2015) Maize plants recognize herbivore-associated cues from caterpillar frass. J Chem Ecol 41(9):781–792

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Alves PC, Ahmad I, Gaffoor I, Acevedo FE, Peiffer M, Jin S, Han Y, Shakeel S, Felton GW, Luthe DS (2016a) Turnabout is fair play: Herbivory-induced plant chitinases excreted in fall armyworm frass suppress herbivore defenses in maize. Plant Phys 171(1):694–706

    Article  CAS  Google Scholar 

  • Ray S, Alves PC, Ahmad I, Gaffoor I, Acevedo FE, Peiffer M, Jin S, Han Y, Shakeel S, Felton GW, Luthe DS (2016) Turnabout is fair play: herbivory-induced plant chitinases excreted in fall armyworm frass suppress herbivore defenses in maize. Plant Physiol 171(1):694–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray S, Basu S, Rivera-Vega LJ, Acevedo FE, Louis J, Felton GW, Luthe DS (2016c) Lessons from the far end: caterpillar frass-induced defenses in maize, rice, cabbage, and tomato. J Chem Ecol 42(11):1130–1141

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Helms AM, Matulis NL, Davidson-Lowe E, Grisales W, Ali JG (2020) Asymmetry in herbivore effector responses: caterpillar frass effectors reduce performance of a subsequent herbivore. J Chem Ecol 46(1):76–83

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro J (1987) Vector salivation and parasite transmission. Memórias do Instituto Oswaldo Cruz 82:1–3

    Article  PubMed  Google Scholar 

  • Ribeiro JMC, Schneider M, Guimaraes JA (1995) Purification and characterization of prolixin S (nitrophorin 2), the salivary anticoagulant of the blood-sucking bug Rhodnius prolixus. Biochem J 308(1):243–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scala A, Allmann S, Mirabella R, Haring MA, Schuurink RC (2013) Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens. Int J Mol Sci 14(9):17781–17811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey PS, Alborn HT, Teal PE (2006) Fragments of ATP synthase mediate plant perception of insect attack. Proc Nat Acad Sci 103(23):8894–8899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelz EA, LeClere S, Carroll MJ, Alborn HT, Teal PEA (2007) Cowpea chloroplastic ATP synthase is the source of multiple plant defense elicitors during insect herbivory. Plant Physiol 144(2):793–805. https://doi.org/10.1104/pp.107.097154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelz EA, Engelberth J, Alborn HT, Tumlinson JH, Teal PE (2009) Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proc Nat Acad Sci 106(2):653–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelz EA, Huffaker A, Carroll MJ, Alborn HT, Ali JG, Teal PE (2012) An amino acid substitution inhibits specialist herbivore production of an antagonist effector and recovers insect-induced plant defenses. Plant Phys 160(3):1468–1478

    Article  CAS  Google Scholar 

  • Schröder R, Cristescu SM, Harren FJ, Hilker M (2007) Reduction of ethylene emission from Scots pine elicited by insect egg secretion. J Exp Bot 58(7):1835–1842

    Article  PubMed  CAS  Google Scholar 

  • Spiteller D, Pohnert G, Boland W (2001) Absolute configuration of volicitin, an elicitor of plant volatile biosynthesis from lepidopteran larvae. Tetrahedron Lett 42(8):1483–1485

    Article  CAS  Google Scholar 

  • Steinbrenner AD, Muñoz-Amatriaín M, Venegas JMA, Lo S, Shi D, Holton N, Zipfel C, Abagyan R, Huffaker A, Close TJ, Schmelz EA (2020) A receptor for herbivore-associated molecular patterns mediates plant immune responses to herbivore-associated molecular pattenrs. Proc Nat Acad Sci 117(49):31510–31518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takai H, Ozawa R, Takabayashi J, Fujii S, Arai K, Ichiki RT, Koeduka T, Dohra H, Ohnishi T, Taketazu S, Kobayashi J (2018) Silkworms suppress the release of green leaf volatiles by mulberry leaves with an enzyme from their spinnerets. Sci Rep 8(1):1–14

    Article  CAS  Google Scholar 

  • Tang Q, Hu Y, Kang L, Wang CZ (2012) Characterization of glucose-induced glucose oxidase gene and protein expression in Helicoverpa armigera larvae. Arch Insect Biochem Phys 79(2):104–119

    Article  CAS  Google Scholar 

  • Tian D, Peiffer M, Shoemaker E, Tooker J, Haubruge E, Francis F, Luthe DS, Felton GW (2012a) Salivary glucose oxidase from caterpillars mediates the induction of rapid and delayed-induced defenses in the tomato plant. PLoS One 7(4):e36168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian D, Tooker J, Peiffer M, Chung SH, Felton GW (2012b) Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta 236(4):1053–1066

    Article  CAS  PubMed  Google Scholar 

  • Tripathi D, Zhang T, Koo AJ, Stacey G, Tanaka K (2018) Extracelluar ATP acts on jasmonate signaling to reinforce plant defense. Plant Phys 176(1):511–523

    Article  CAS  Google Scholar 

  • Truitt CL, Paré PW (2004) In situ translocation of volicitin by beet armyworm larvae to maize and systemic immobility of the herbivore elicitor in planta. Planta 218(6):999–1007

    Article  CAS  PubMed  Google Scholar 

  • Truitt CL, Wei HX, Paré PW (2004) A plasma membrane protein from Zea mays binds with the herbivore elicitor volicitin. Plant Cell 16(2):523–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tumlinson JH, Engelberth J (2008) Fatty acid-derived signals that induce or regulate plant defenses against herbivory. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Dordrecht, pp 389–407

    Chapter  Google Scholar 

  • Tumlinson JH, Lait CG (2005) Biosynthesis of fatty acid amide elicitors of plant volatiles by insect herbivores. Arch Insect Biochem Phys Publ Collab Entomol Soc Am 58(2):54–68

    Article  CAS  Google Scholar 

  • Turlings TC, McCall PJ, Alborn HT, Tumlinson JH (1993) An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. J Chem Ecol 19(3):411–425

    Article  CAS  PubMed  Google Scholar 

  • Turlings TC, Loughrin JH, Mccall PJ, Röse US, Lewis WJ, Tumlinson JH (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Nat Acad Sci 92(10):4169–4174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward Y, Gupta S, Jensen P, Wartmann M, Davis RJ, Kelly K (1994) Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PAC1. Nature 367(6464):651–654

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Peiffer M, Luthe DS, Felton GW (2012) ATP hydrolyzing salivary enzymes of caterpillars suppress plant defenses. PloS One 7(7):e41947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang KL (2017) Combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase for catalyzing cascade chemical reactions. Enzyme Microb Tech 100:52–59

    Article  CAS  Google Scholar 

  • Yoshinaga N, Aboshi T, Abe H, Nishida R, Alborn HT, Tumlinson JH, Mori N (2008) Active role of fatty acid amino acid conjugates in nitrogen metabolism in Spodoptera litura larvae. Proc Nat Acad Sci 105(46):18058–18063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshinaga N, Alborn HT, Nakanishi T, Suckling DM, Nishida R, Tumlinson JH, Mori N (2010) Fatty acid-amino acid conjugates diversification in lepidopteran caterpillars. J Chem Ecol 36(3):319–325

    Article  CAS  PubMed  Google Scholar 

  • Yoshinaga N, Ishikawa C, Seidl-Adams I, Bosak E, Aboshi T, Tumlinson JH, Mori N (2014) N-(18-hydroxylinolenoyl)-L-glutamine: a newly discovered analog of volicitin in Manduca sexta and its elicitor activity in plants. J Chem Ecol 40(5):484–490

    Article  CAS  PubMed  Google Scholar 

  • Yu SJ (1989) Purification and characterization of glutathione transferases from five phytophagous Lepidoptera. Pestic Biochem Phys 35(1):97–105

    Article  CAS  Google Scholar 

  • Zunjarrao SS, Tellis MB, Joshi SN, Joshi RS (2020) Plant-insect interaction: the saga of molecular coevolution. In: Mérillon JM, Ramawat KG (eds) Co-evolution of secondary metabolites. Springer, Nature, pp 19–45

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge John Tooker and Andrew Stephenson from Pennsylvania State University for helpful discussions during the early stages of preparing this manuscript. This review was part of a larger project, funded in part through the United States Department of Agriculture National Institute of Food and Agriculture Pre-Doctoral Fellowship #2017-06899.

Funding

This review was part of a larger project, funded in part through the United States Department of Agriculture National Institute of Food and Agriculture Pre-Doctoral Fellowship #2017-06899.

Author information

Authors and Affiliations

Authors

Contributions

The initial idea for this review was collaborative among the authors. ACJ performed the literature search and drafted the work. JHT and GW Felton critically revised the work.

Corresponding author

Correspondence to Anne C. Jones.

Ethics declarations

Conflict of interest

The authors declare no conflicting or competing financial interests. Author A. C. Jones has no relevant non-financial interests to declare. Authors G. W. Felton and J. H. Tumlinson serve as editor-in-chief and on the editorial board of the Journal of Chemical Ecology, respectively.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, A.C., Felton, G.W. & Tumlinson, J.H. The dual function of elicitors and effectors from insects: reviewing the ‘arms race’ against plant defenses. Plant Mol Biol 109, 427–445 (2022). https://doi.org/10.1007/s11103-021-01203-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-021-01203-2

Keywords

Navigation