Skip to main content
Log in

Structure, evolution and diverse physiological roles of SWEET sugar transporters in plants

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Present review describes the structure, evolution, transport mechanism and physiological functions of SWEETs. Their application using TALENs and CRISPR/CAS9 based genomic editing approach is discussed.

Abstract

Sugars Will Eventually be Exported Transporters (SWEET) proteins were first identified in plants as the novel family of sugar transporters which mediates the translocation of sugars across cell membranes. The SWEET family of sugar transporters is unique in terms of their structure which contains seven predicted transmembrane domains with two internal triple-helix bundles which possibly originate due to prokaryotic gene duplication. SWEETs perform diverse physiological functions such as pollen nutrition, nectar secretion, seed filling, phloem loading, and pathogen nutrition which we have discussed in the present review. We also discuss how transcriptional activator-like effector nucleases (TALENs) and CRISPR/CAS9 genome editing tools are used to engineer SWEET mutants which modulate pathogen resistance in plants and its applications in the field of agriculture. The expression of SWEETs promises to implement insights into many other cellular transport mechanisms. To conclude, the present review highlights the recent aspects which will further develop better understanding of molecular evolution, structure, and function of SWEET transporters in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29:380–395

    Article  CAS  PubMed  Google Scholar 

  • Antony G, Zhou J, Huang S, Li T, Liu B, White F et al (2010) Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22:3864–3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai Y, Kobayashi Y, Kobayashi I (2015) Increased expression of the tomato SISWEET15 gene during grey mold infection and the possible involvement of the sugar efflux to apoplasm in the disease susceptibility. J Plant Pathol Microbiol 7:329

    Google Scholar 

  • Ayre BG (2011) Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. Mol Plant 4:377–394

    Article  CAS  PubMed  Google Scholar 

  • Baker RF, Leach KA, Braun DM (2012) SWEET as sugar: new sucrose effluxers in plants. Mol Plant 5:766–768

    Article  PubMed  Google Scholar 

  • Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. J Exp Bot 58:4019–4026

    Article  CAS  PubMed  Google Scholar 

  • Bezrutczyk M, Yang J, Eom JS, Prior M, Sosso D, Hartwig T et al (2017) Sugar flux and signaling in plant–microbe interactions. Plant J 93(4):675–685

    Article  CAS  PubMed  Google Scholar 

  • Bezrutczyk M, Hartwig T, Horschman M, Char SN, Yang J, Yang B et al (2018) Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays. New Phytol 218(2):594–603

    Article  CAS  PubMed  Google Scholar 

  • Bi H, Yang B (2017) Gene editing with TALEN and CRISPR/Cas in rice. Prog Mol Biol Transl Sci 149:81–98

    Article  PubMed  Google Scholar 

  • Bihmidine S, Julius BT, Dweikat I, Braun DM (2016) Tonoplast Sugar Transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems. Plant Signal Behav 11(1):e1117721

    Article  CAS  PubMed  Google Scholar 

  • Bock KW, Honys D, Ward JM, Padmanaban S, Nawrocki EP, Hirschi KD et al (2006) Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol 140:1151–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun DM (2012) SWEET! The pathway is complete. Science 335:173–174

    Article  CAS  PubMed  Google Scholar 

  • Chardon F, Bedu M, Calenge F, Spinner L, Clement G, Chietera G et al (2013) Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Curr Biol 23:697–702

    Article  CAS  PubMed  Google Scholar 

  • Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ et al (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR et al (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211

    Article  CAS  PubMed  Google Scholar 

  • Chen LQ, Lin IW, Qu XQ, Sosso D, McFarlane HE, Londono A et al (2015) A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell 27:607–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong J, Piron MC, Meyer S, Merdinoglu D, Bertsch C, Mestre P (2014) The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. J Exp Bot 22:6589–6601

    Article  CAS  Google Scholar 

  • Chu Z, Fu B, Yang H, Xu C, Li Z, Sanchez A et al (2006) Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theor Appl Genet 112:455–461

    Article  CAS  PubMed  Google Scholar 

  • Cohn M, Bart RS, Shybut M, Dahlbeck D, Gomez M, Morbitzer R et al (2014) Xanthomonas axonopodis virulence is promoted by a Transcription Activator-Like Effector-mediated induction of a SWEET sugar transporter in cassava. Mol Plant Microbe Interact 27:1186–1198

    Article  CAS  PubMed  Google Scholar 

  • Cox KL, Meng F, Wilkins KE, Li F, Wang P, Booher NJ et al (2017) TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nat Commun 8:15588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Lage JL, Binder M, Hua-Van A, Janecek S, Casane D (2013) Genemake-up: rapid and massiveintron gains after horizontal transfer of a bacterial α-amylase gene to Basidiomycetes. BMC Evol Biol 13:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng D, Sun P, Yan C, Ke M, Jiang X, Xiong L et al (2015) Molecular basis of ligand recognition and transport by glucose transporters. Nature 526:391–396

    Article  CAS  PubMed  Google Scholar 

  • Dhandapani P, Song JC, Novak O, Jameson PE (2016) Infection by Rhodococcus fascians maintains cotyledons as a sink tissue for the pathogen. Ann Bot 119(5):841–852

    PubMed Central  Google Scholar 

  • Durand M, Mainson D, Porcheron B, Maurousset L, Lemoine R, Pourtau N (2018) Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters. Planta 247(3):587–611

    Article  CAS  PubMed  Google Scholar 

  • Engel ML, Holmes-Davis R, McCormick S (2005) Green sperm. Identification of male gamete promoters in Arabidopsis. Plant Physiol 138:2124–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eom JS, Chen LQ, Sosso D, Julius BT, Lin IW, Qu XQ et al (2015) SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol 25:53–62

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Frommer WB (2015) Structure and function of SemiSWEET and SWEET sugar transporters. Trends Biochem Sci 40:480–486

    Article  CAS  PubMed  Google Scholar 

  • Fotopoulos V, Gilbert MJ, Pittman JK, Marvier AC, Buchanan AJ, Sauer N et al (2003) The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atbetafruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol 132:821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Zhang C, Han X, Wang ZY, Ma L, Yuan P et al (2018) Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease. Mol Plant Pathol 19(9):2149–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge YX, Angenent GC, Wittich PE, Peters J, Franken J, Busscher M et al (2000) NEC1, a novel gene, highly expressed in nectary tissue of Petunia hybrida. Plant J 24:725–734

    Article  CAS  PubMed  Google Scholar 

  • Ge YX, Angenent GC, Dahlhaus E, Franken J, Peters J, Wullems GJ et al (2001) Partial silencing of the NEC1 gene results in early opening of anthers in Petunia hybrida. Mol Genet Genom 265:414–423

    Article  CAS  Google Scholar 

  • Gebauer P, Korn M, Engelsdorf T, Sonnewald U, Koch C, Voll LM (2017) Sugar accumulation in leaves of Arabidopsis sweet11/sweet12 double mutants enhances priming of the salicylic acid-mediated defense response. Front Plant Sci 8:1378

    Article  PubMed  PubMed Central  Google Scholar 

  • Giaquinta RT (1983) Phloem loading of sucrose. Annu Rev Plant Physiol 34:347–387

    Article  CAS  Google Scholar 

  • Guan YF, Huang XY, Zhu J, Gao JF, Zhang HX, Yang ZN (2008) RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol 147:852–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo WJ, Nagy R, Chen HY, Pfrunder S, Yu YC, Santelia D et al (2014) SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiol 164:777–789

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Li H, Xia X, Liu X, Yang L (2018) Functional and evolution characterization of SWEET sugar transporters in Ananas comosus. Biochem Biophys Res Commun 496(2):407–414

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Sankararamakrishnan R (2018) dbSWEET: an integrated resource for SWEET superfamily to understand, analyze and predict the function of sugar transporters in prokaryotes and eukaryotes. J Mol Biol 430(15):2203–2211

    Article  CAS  PubMed  Google Scholar 

  • Hacquard S, Garrido-Oter R, Gonzalez A, Spaepen S, Ackermann G, Lebeis S et al (2015) Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17:603–616

    Article  CAS  PubMed  Google Scholar 

  • Han Lei Z, Yongping L, Min Z, Ye L, Guangyuan LL (2017) Molecular mechanism of substrate recognition and transport by the AtSWEET13 sugar transporter. Proc Natl Acad Sci USA 114(38):10089–10094

    Article  CAS  PubMed  Google Scholar 

  • Hu YB, Sosso D, Qu XQ, Chen LQ, Ma L, Chermak D et al (2016) Phylogenetic evidence for a fusion of archaeal and bacterial SemiSWEETs to form eukaryotic SWEETs and identification of SWEET hexose transporters in the amphibian chytrid pathogen Batrachochytrium dendrobatidis. FASEB J 30:3644–3654

    Article  CAS  PubMed  Google Scholar 

  • Irimia M, Roy SW (2014) Origin of spliceosomal introns and alternative splicing. Cold Spring Harb Perspect Biol 6:a016071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaehme M, Guskov A, Slotboom DJ (2014) Crystal structure of the vitamin B3 transporter PnuC, a full-length SWEET homolog. Nat Struct Mol Biol 21:1013–1015

    Article  CAS  PubMed  Google Scholar 

  • Jameson PE, Dhandapani P, Novak O, Song JC (2016) Cytokinins and expression of SWEET, SUT, CWINV and AAP genes increases as pea seeds germinate. Int J Mol Sci 17(12):2013

    Article  CAS  PubMed Central  Google Scholar 

  • Jia B, Zhu XF, Pu ZJ, Duan YX, Hao LJ, Zhang J et al (2017) Integrative view of the diversity and evolution of SWEET and SemiSWEET sugar transporters. Front Plant Sci 8:2178

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:188

    Article  CAS  Google Scholar 

  • Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, Sano N et al (2016) AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nat Commun 7:13245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay S, Hahn S, Marois E, Wieduwild R, Bonas U (2009) Detailed analysis of the DNA recognition motifs of the Xanthomonas type III effectors AvrBs3 and AvrBs3Deltarrep16. Plant J 59:859–871

    Article  CAS  PubMed  Google Scholar 

  • Klemens PA, Patzke K, Deitmer J, Spinner L, Le Hir R, Bellini C et al (2013) Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth and stress tolerance in Arabidopsis thaliana. Plant Physiol 63:1338–1352

    Article  CAS  Google Scholar 

  • Kobayashi T, Kobayashi E, Sato S, Hotta Y, Miyajima N, Tanaka A et al (1994) Characterization of cDNAs induced in meiotic prophase in lily microsporocytes. DNA Res 1:15–26

    Article  CAS  PubMed  Google Scholar 

  • Kryvoruchko IS, Sinharoy S, Torres-Jerez I, Sosso D, Pislariu CI, Guan D et al (2016) MtSWEET11, a nodule-specific sucrose transporter of Medicago truncatula. Plant Physiol 171(1):554–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latorraca NR, Fastman NM, Venkatakrishnan AJ, Frommer WB, Dror RO, Feng L (2017) Mechanism of substrate translocation in an alternating access transporter. Cell 169:96–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Nishizawa T, Yamashita K, Ishitani R, Nureki O (2015) Structural basis for the facilitative diffusion mechanism by SemiSWEET transporter. Nat Commun 19(6):6112

    Article  CAS  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  • Li T, Huang S, Zhou J, Yang B (2013) Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in rice. Mol Plant 6:781–789

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang Y, Zhang H, Zhang Q, Zhai H, Liu Q et al (2017) The plasma membrane-localized sucrose transporter IbSWEET10 contributes to the resistance of sweet potato to Fusarium oxysporum. Front Plant Sci 14(8):197

    Google Scholar 

  • Li H, Li X, Xuan Y, Jiang J, Wei Y, Piao Z (2018a) Genome wide identification and expression profiling of SWEET genes family reveals its role during Plasmodiophora brassicae-induced formation of clubroot in Brassica rapa. Front Plant Sci 9:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Ren Z, Wang Z, Sun K, Pei X, Liu Y et al (2018b) Evolution and stress responses of Gossypium hirsutum SWEET genes. Int J Mol Sci 19(3):769

    Article  CAS  PubMed Central  Google Scholar 

  • Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, Kessler D et al (2014) Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 508:546–549

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Zhang D, Miao Q, Yang J, Xuan Y, Hu Y (2017) Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling. Plant Cell Physiol 58(5):863–873

    Article  CAS  PubMed  Google Scholar 

  • Makita Y, Shimada S, Kawashima M, Kondou-Kuriyama T, Toyoda T, Matsui M (2015) MOROKOSHI: transcriptome database in Sorghum bicolor. Plant Cell Physiol 56(1):e6

    Article  CAS  PubMed  Google Scholar 

  • Manck-Gotzenberger J, Requena N (2016) Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front Plant Sci 7:487

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin AP, Palmer WM, Brown C, Abel C, Lunn JE, Furbank RT et al (2016) A developing Setaria viridis internode: an experimental system for the study of biomass generation in a C4 model species. Biotechnol Biofuels 9:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGaughey SA, Osborn HL, Chen L, Pegler JL, Tyerman SD, Furbank RT et al (2016) Roles of aquaporins in Setaria viridis stem development and sugar storage. Front Plant Sci 7:1815

    Article  PubMed  PubMed Central  Google Scholar 

  • Miao H, Sun P, Liu Q, Miao Y, Liu J, Zhang K et al (2017) Genome-wide analyses of SWEET family proteins reveal involvement in fruit development and abiotic/biotic stress responses in banana. Sci Rep 7:3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno H, Kasuga S, Kawahigashi H (2016) The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling. Biotechnol Biofuels 9:127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore PH, Cosgrove DJ (1991) Developmental changes in cell and tissue water relations parameters in storage parenchyma of sugarcane. Plant Physiol 96:794–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriyama EN, Strope PK, Opiyo SO, Chen Z, Jones AM (2006) Mining the Arabidopsis thaliana genome for highly-divergent seven transmembrane receptors. Genome Biol 7:R96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil G, Valliyodan B, Deshmukh R, Prince S, Nicander B, Zhao M et al (2015) Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genom 16:520

    Article  CAS  Google Scholar 

  • Perotto S, Rodda M, Benetti A, Sillo F, Ercole E, Rodda M, Girlanda M et al (2014) Gene expression in mycorrhizal orchid protocorms suggests a friendly plantfungus relationship. Planta 239:1337–1349

    Article  CAS  PubMed  Google Scholar 

  • Phukan UJ, Mishra S, Timbre K, Luqman S, Shukla RK (2014) Mentha arvensis exhibit better adaptive characters in contrast to Mentha piperita when subjugated to sustained waterlogging stress. Protoplasma 251:603–614

    Article  PubMed  Google Scholar 

  • Phukan UJ, Mishra S, Shukla RK (2015) Waterlogging and submergence stress: affects and acclimation. Crit Rev Biotechnol 16:1–11

    Google Scholar 

  • Phukan UJ, Jeena GS, Tripathi V, Shukla RK (2017) MaRAP2-4, a waterlogging-responsive ERF from Mentha, regulates bidirectional sugar transporter AtSWEET10 to modulate stress response in Arabidopsis. Plant Biotechnol J 16(1):221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quirino B, Normanly J, Amasino R (1999) Diverse range of gene activity during Arabidopsis thaliana leaf senescence including pathogen-independent induction of defense-related genes. Plant Mol Biol 40:267–278

    Article  CAS  PubMed  Google Scholar 

  • Sade D, Brotman Y, Eybishtz A, Cuadros-Inostroza A, Fernie AR, Willmitzer L et al (2013) Involvement of the hexose transporter gene LeHT1 and of sugars in resistance of tomato to tomato yellow leaf curl virus. Mol Plant 6:1707–1710

    Article  CAS  PubMed  Google Scholar 

  • Salts Y, Sobolev I, Chmelnitsky I, Shabtai S, Barg R (2005) Genomic structure and expression of Lestd1, a seven-transmembrane-domain proteon-encoding gene specially expressed in tomato pollen. Isr J Plant Sci 53:79–88

    CAS  Google Scholar 

  • Schussler A, Martin H, Cohen D, Fitz M, Wipf D (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Park JM, Kang SK, Kim SG, Park CM (2011) An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta 233:189–200

    Article  CAS  PubMed  Google Scholar 

  • Siemens J, Keller I, Sarx J, Kunz S, Schuller A, Nagel W et al (2006) Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol Plant Microbe Interact 19(5):480–494

    Article  CAS  PubMed  Google Scholar 

  • Sosso D, Luo DP, Li QB, Sasse J, Yang J, Gendrot G et al (2015) Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat Genet 47:1489–1493

    Article  CAS  PubMed  Google Scholar 

  • Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B (2013) Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol 200(3):808–819

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama A, Saida Y, Yoshimizu M, Takanashi K, Sosso D, Frommer WB et al (2017) Molecular characterization of LjSWEET3, a sugar transporter in nodules of Lotus japonicus. Plant Cell Physiol 58(2):298–306

    CAS  PubMed  Google Scholar 

  • Sui JL, Xiao XH, Qi JY, Fang YJ, Tang CR (2017) The SWEET gene family in Hevea brasiliensis - its evolution and expression compared with four other plant species. FEBS Open Bio 7(12):1943–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun N, Zhao H (2013) Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol Bioeng 110:1811–1821

    Article  CAS  PubMed  Google Scholar 

  • Sun MX, Huang XY, Yang J, Guan YF, Yang ZN (2013) Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage. Plant Reprod 26:83–91

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Cheung LS, Li S, Eom JS, Chen LQ, Xu Y et al (2015) Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature 527:259–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    Article  CAS  PubMed  Google Scholar 

  • Udvardi MK, Yang LJO, Young S, Day DA (1990) Sugar and amino acid transport across symbiotic membranes from soybean nodules. Mol Plant Microbe Interact 3:334–340

    Article  CAS  Google Scholar 

  • Van Schie CCN, Takken FLW (2014) Susceptibility genes 101: how to be a good host. Annu Rev Phytopathol 52:551–581

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yan C, Li Y, Hirata K, Yamamoto M, Yan N et al (2014) Crystal structure of a bacterial homologue of SWEET transporters. Cell Res 24:1486–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Yao L, Hao X, Li N, Qian W et al (2018) Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis. Plant Mol Biol 96(6):577–592

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Liu F, Chen C, Ma F, Li M (2014) The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars. Front Plant Sci 5:569

    Article  PubMed  PubMed Central  Google Scholar 

  • Wellmer F, Alves-Ferreira M, Dubois A, Riechmann JL, Meyerowitz EM (2006) Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet 2:e117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Lee SK, Yoo Y, Wei J, Kwon SY, Lee SW et al (2018) Rice transcription factor OsDOF11 modulates sugar transport by promoting expression of sucrose transporter and SWEET genes. Mol Plant 11(6):833–845

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Tao Y, Cheung LS, Fan C, Chen LQ, Xu S et al (2014) Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature 515:448–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xuan YH, Hu YB, Chen LQ, Sosso D, Ducat DC, Hou BH et al (2013) Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proc Natl Acad Sci USA 110:E3685–E3694

    Article  PubMed  Google Scholar 

  • Yamada K, Saijo Y, Nakagami H, Takano Y (2016) Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science 354:1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Sugio A, White FF (2006) Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA 103:10503–10508

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Luo D, Yang B, Frommer WB, Eom JS (2018) SWEET11 and 15 as key players in seed filling in rice. New Phytol 218(2):604–615

    Article  CAS  PubMed  Google Scholar 

  • Yee DC, Shlykov MA, Vastermark A, Reddy VS, Arora S, Sun EI et al (2013) The transporter-opsin-G protein-coupled receptor (TOG) superfamily. FEBS J 280:5780–5800

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, Wang S (2013) Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Mol Plant 6(3):665–674

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, Chu Z, Li X, Xu C, Wang S (2009) Pathogen-induced expressional loss of function is the key factor in race-specific bacterial resistance conferred by a recessive R gene xa13 in rice. Plant Cell Physiol 50:947–955

    Article  CAS  PubMed  Google Scholar 

  • Zaidi SS, Tashkandi M, Mansoor S, Mahfouz MM (2016) Engineering plant immunity: using CRISPR/Cas9 to generate virus resistance. Front Plant Sci 7:1673

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Wang S, Yu F, Tang J, Shan X, Bao K et al (2019) Genome-wide characterization and expression profiling of SWEET genes in cabbage (Brassica oleracea var. capitata L.) reveal their roles in chilling and clubroot disease responses. BMC Genom 20(1):93

    Article  Google Scholar 

  • Zhao D, You Y, Fan H, Zhu X, Wang Y, Duan Y et al (2018) The role of sugar transporter genes during early infection by root-knot nematodes. Int J Mol Sci 19(1):E302

    Article  CAS  PubMed  Google Scholar 

  • Zhen Q, Fang T, Peng Q, Liao L, Li Zhao, Owiti A et al (2018) Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation. Hortic Res 5:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Liu L, Huang W, Yuan M, Zhou F, Li X (2014) Overexpression of OsSWEET5 in rice causes growth retardation and precocious senescence. PLoS ONE 9(4):e94210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS et al (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82(4):632–643

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Director, CSIR-Central Institute of Medicinal & Aromatic Plants, Lucknow, India for providing the necessary facilities. GSJ and SK acknowledge UGC for fellowship.

Author information

Authors and Affiliations

Authors

Contributions

GSJ has written and compiled the manuscript. SK has helped in editing the manuscript. RKS has conceptualized the theme and edited the final manuscript. All authors finally read and approved the manuscript.

Corresponding author

Correspondence to Rakesh Kumar Shukla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeena, G.S., Kumar, S. & Shukla, R.K. Structure, evolution and diverse physiological roles of SWEET sugar transporters in plants. Plant Mol Biol 100, 351–365 (2019). https://doi.org/10.1007/s11103-019-00872-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-019-00872-4

Keywords

Navigation