Skip to main content
Log in

RETRACTED ARTICLE: Overexpression of PsnSuSy1, 2 genes enhances secondary cell wall thickening, vegetative growth, and mechanical strength in transgenic tobacco

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This article was retracted on 25 April 2023

This article has been updated

Abstract

Key message

Two homologs PsnSuSy1 and PsnSuSy2 from poplar played largely similar but little distinct roles in modulating sink strength, accelerating vegetative growth and modifying secondary growth of plant. Co-overexpression of them together resulted in small but perceptible additive effects.

Abstract

Sucrose synthase (SuSy) acts as a crucial determinant of sink strength by controlling the conversion of sucrose into UDP-glucose, which is not only the sole precursor for cellulose biosynthesis but also an extracellular signaling molecule for plants growth. Therefore, modification of SuSy activity in plants is of utmost importance. We have isolated two SuSy genes from poplar, PsnSuSy1 and PsnSuSy2, which were preferentially expressed in secondary xylem/phloem. To investigate their functions, T2 tobacco transgenic lines of PsnSuSy1 and PsnSuSy2 were generated and then crossed to generate PsnSuSy1/PsnSuSy2 dual overexpression transgenic lines. SuSy activities in all lines were significantly increased though PsnSuSy1/PsnSuSy2 lines only exhibited slightly higher SuSy activities than either PsnSuSy1 or PsnSuSy2 lines. The significantly increased fructose and glucose, engendered by augmented SuSy activities, caused the alternations of many physiological, biochemical measures and phenotypic traits that include accelerated vegetative growth, thickened secondary cell wall, and increased stem breaking force, accompanied with altered expression levels of related pathway genes. The correlation relationships between SuSy activities and many of these traits were statistically significant. However, differences of almost all traits among three types of transgenic lines were insignificant. These findings clearly demonstrated that PsnSuSy1 and PsnSuSy2 had similar but little distinct functions and insubstantial additive effects on modulating sink strength and affecting allocation of carbon elements among secondary cell wall components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  • Amor Y, Haigler CH, Johnson S, Waincott M, Delmer PD (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose. Proc Natl Acad Sci USA 26(20):9353–9357

    Article  Google Scholar 

  • An X, Chen Z, Wang J, Ye M, Ji L, Wang J, Liao W, Ma H (2014) Identification and characterization of the Populus sucrose synthase gene family. Gene 539(1):58–67

    Article  CAS  PubMed  Google Scholar 

  • Andersson-Gunneras S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B (2006) Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J 45(2):144–165

    Article  PubMed  Google Scholar 

  • Appenzeller L, Doblin M, Barreiro R, Wang HY, Niu XM, Kollipara K, Carrigan L, Tomes D, Chapman M, Dhugga KS (2004) Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose 11(3–4):287–299

    Article  CAS  Google Scholar 

  • Asano T, Kunieda N, Omura Y, Ibe H, Kawasaki T, Takano M, Sato M, Furuhashi H, Mujin T, Takaiwa F, Wu Cy CY, Tada Y, Satozawa T, Sakamoto M, Shimada H (2002) Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant cell 14(3):619–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aspeborg H, Schrader J, Coutinho PM, Stam M, Kallas A, Djerbi S, Nilsson P, Denman S, Amini B, Sterky F, Master E, Sandberg G, Mellerowicz E, Sundberg B, Henrissat B, Teeri TT (2005) Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiol 137(3):983–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baroja-Fernandez E, Munoz FJ, Montero M, Etxeberria E, Sesma MT, Ovecka M, Bahaji A, Ezquer I, Li J, Prat S, Pozueta-Romero J (2009) Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol 50(9):1651–1662

    Article  CAS  PubMed  Google Scholar 

  • Barratt DH, Derbyshire P, Findlay K, Pike M, Wellner N, Lunn J, Feil R, Simpson C, Maule AJ, Smith AM (2009) Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci USA 106(31):13124–13129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baud S, Vaultier MN, Rochat C (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot 55(396):397–409

    Article  CAS  PubMed  Google Scholar 

  • Bieniawska Z, Paul Barratt D, Garlick AP, Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J 49(5):810–828

    Article  CAS  PubMed  Google Scholar 

  • Burkle L, Hibberd JM, Quick WP, Kuhn C, Hirner B, Frommer WB (1998) The H+-sucrose cotransporter NtSUT1 is essential for sugar export from tobacco leaves. Plant Physiol 118(1):59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson SJ, Chourey PS (1996) Evidence for plasma membrane-associated forms of sucrose synthase in maize. Mol Gen Genet 252(3):303–310

    Article  CAS  PubMed  Google Scholar 

  • Chen YC, Chourey PS (1989) Spatial and temporal expression of the two sucrose synthase genes in maize: immunohistological evidence. Theor Appl Genet 78(4):553–559

    Article  CAS  PubMed  Google Scholar 

  • Chourey PS (1981) Genetic control of sucrose synthetase in maize endosperm. Mol Gen Genet 184(3):372–376

    Article  CAS  Google Scholar 

  • Coleman HD, Ellis DD, Gilbert M, Mansfield SD (2006) Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism. Plant Biotechnol J 4(1):87–101

    Article  CAS  PubMed  Google Scholar 

  • Coleman HD, Yan J, Mansfield SD (2009) Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA 106(31):13118–13123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Aoust M-A, Yelle S, Nguyen-Quoc B (1999) Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit. Plant cell 11(12):2407–2418

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhugga KS (2007) Maize biomass yield and composition for biofuels. Crop Sci 47(6):2211–2227

    Article  CAS  Google Scholar 

  • Fan C, Feng S, Huang J, Wang Y, Wu L, Li X, Wang L, Tu Y, Xia T, Li J, Cai X, Peng L (2017) AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass saccharification and lodging resistance by distinctively altering lignocellulose features in rice. Biotechnol Biofuels 10:221

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan C, Li Y, Hu Z, Hu H, Wang G, Li A, Wang Y, Tu Y, Xia T, Peng L, Feng S (2018) Ectopic expression of a novel OsExtensin-like gene consistently enhances plant lodging resistance by regulating cell elongation and cell wall thickening in rice. Plant Biotechnol J 16(1):254–263

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Park WD (1995) Sink- and vascular-associated sucrose synthase functions are encoded by different gene classes in potato. Plant cell 7(9):1369–1385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii S, Hayashi T, Mizuno K (2010) Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiol 51(2):294–301

    Article  CAS  PubMed  Google Scholar 

  • Geigenberger P, Stitt M (1993) Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant tissues. Planta 189(3):329–339

    Article  CAS  PubMed  Google Scholar 

  • Gerber L, Zhang B, Roach M, Rende U, Gorzsas A, Kumar M, Burgert I, Niittyla T, Sundberg B (2014) Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers. New Phytol 203(4):1220–1230

    Article  CAS  PubMed  Google Scholar 

  • Gibson TB, Lawrence MC, Gibson CJ, Vanderbilt CA, McGlynn K, Arnette D, Chen W, Collins J, Naziruddin B, Levy MF, Ehrlich BE, Cobb MH (2006) Inhibition of glucose-stimulated activation of extracellular signal-regulated protein kinases 1 and 2 by epinephrine in pancreatic beta-cells. Diabetes 55(4):1066–1073

    Article  CAS  PubMed  Google Scholar 

  • Goren S, Lugassi N, Stein O, Yeselson Y, Schaffer AA, David-Schwartz R, Granot D (2017) Suppression of sucrose synthase affects auxin signaling and leaf morphology in tomato. PLoS ONE 12(8):e0182334

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashi T, Ohmiya Y, Konishi T (2004) Evidence that sucrose loaded into the phloem of a poplar leaf is used directly by sucrose synthase associated with xyloglucan synthase in the stem. Am Chem Soc 227:U292–U292

    Google Scholar 

  • Heim U, Weber H, Baumlein H, Wobus U (1993) A sucrose-synthase gene of Vicia faba L.: expression pattern in developing seeds in relation to starch synthesis and metabolic regulation. Planta 191(3):394–401

    Article  CAS  PubMed  Google Scholar 

  • Hirose T, Scofield GN, Terao T (2008) An expression analysis profile for the entire sucrose synthase gene family in rice. Plant Sci 174(5):534–543

    Article  CAS  Google Scholar 

  • Huber SC, Huber JL, Liao PC, Gage DA, McMichael RW Jr, Chourey PS, Hannah LC, Koch K (1996) Phosphorylation of serine-15 of maize leaf sucrose synthase. Occurrence in vivo and possible regulatory significance. Plant Physiol 112(2):793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janse van Rensburg HC, Van den Ende W (2017) UDP-glucose: a potential signaling molecule in plants? Front Plant Sci 8:2230

    Article  Google Scholar 

  • Jiang Y, Guo W, Zhu H, Ruan YL, Zhang T (2012) Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnol J 10(3):301–312

    Article  CAS  PubMed  Google Scholar 

  • Jourez B, Riboux A, Leclercq A (2001) Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cvGhoy’). Iawa J 22(2):133–158

    Article  Google Scholar 

  • Kennedy A, Frank RN, Varma SD (1983) Aldose reductase activity in retinal and cerebral microvessels and cultured vascular cells. Invest Ophthalmol Vis Sci 24(9):1250–1258

    CAS  PubMed  Google Scholar 

  • King SP, Lunn JE, Furbank RT (1997) Carbohydrate content and enzyme metabolism in developing canola siliques. Plant Physiol 114(1):153–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolosova N, Miller B, Ralph S, Ellis BE, Douglas C, Ritland K, Bohlmann J (2004) Isolation of high-quality RNA from gymnosperm and angiosperm trees. Biotechniques 2:353–359

    Google Scholar 

  • Komatsu A, Moriguchi T, Koyama K, Omura M, Akihama T (2002) Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. J Exp Bot 53(366):61–71

    Article  CAS  PubMed  Google Scholar 

  • Komina O, Zhou Y, Sarath G, Chollet R (2002) In vivo and in vitro phosphorylation of membrane and soluble forms of soybean nodule sucrose synthase. Plant Physiol 129(4):1664–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi T, Ohmiya Y, Hayashi T (2004) Evidence that sucrose loaded into the phloem of a poplar leaf is used directly by sucrose synthase associated with various β-glucan synthases in the stem. Plant Physiol 134(3):1146–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Baroja-Fernandez E, Bahaji A, Munoz FJ, Ovecka M, Montero M, Sesma MT, Alonso-Casajus N, Almagro G, Sanchez-Lopez AM, Hidalgo M, Zamarbide M, Pozueta-Romero J (2013) Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) seed endosperms. Plant Cell Physiol 54(2):282–294

    Article  CAS  PubMed  Google Scholar 

  • Li F, Zhang M, Guo K, Hu Z, Zhang R, Feng Y, Yi X, Zou W, Wang L, Wu C, Tian J, Lu T, Xie G, Peng L (2015) High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol J 13(4):514–525

    Article  CAS  PubMed  Google Scholar 

  • Liao Z, Chen M, Guo L, Gong Y, Tang F, Sun X, Tang K (2004) Rapid isolation of high-quality total RNA from taxus and ginkgo. Prep Biochem Biotechnol 34(3):209–214

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lunn JE, Hatch MD (1995) Primary partitioning and storage of photosynthate in sucrose and starch in leaves of C4 plants. Planta 197:385–391

    Article  CAS  Google Scholar 

  • Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao RP (2008) Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant cell 20(4):843–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilate G, Dejardin A, Laurans F, Leple JC (2004) Tension wood as a model for functional genomics of wood formation. New Phytol 164(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Plavcova L, Hacke UG, Almeida-Rodriguez AM, Li E, Douglas CJ (2013) Gene expression patterns underlying changes in xylem structure and function in response to increased nitrogen availability in hybrid poplar. Plant Cell Environ 36(1):186–199

    Article  CAS  PubMed  Google Scholar 

  • Poovaiah CR, Mazarei M, Decker SR, Turner GB, Sykes RW, Davis MF, Stewart CN Jr (2015) Transgenic switchgrass (Panicum virgatum L.) biomass is increased by overexpression of switchgrass sucrose synthase (PvSUS1). Biotechnol J 10(4):552–563

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Wang L, Zhou Q (2013) Effects of bisphenol A on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere 90(3):1274–1280

    Article  CAS  PubMed  Google Scholar 

  • Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133(3):1051–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL, Chourey PS (1998) A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds. Plant Physiol 118(2):399–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan YL, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant cell 15(4):952–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan YL, Llewellyn DJ, Furbank RT, Chourey PS (2005) The delayed initiation and slow elongation of fuzz-like short fibre cells in relation to altered patterns of sucrose synthase expression and plasmodesmata gating in a lintless mutant of cotton. J Exp Bot 56(413):977–984

    Article  CAS  PubMed  Google Scholar 

  • Salnikov VV, Grimson MJ, Delmer DP, Haigler CH (2001) Sucrose synthase localizes to cellulose synthesis sites in tracheary elements. Phytochemistry 57(6):823–833

    Article  CAS  PubMed  Google Scholar 

  • Schroeder MR, Borkhsenious ON, Matsuoka K, Nakamura K, Raikhel NV (1993) Colocalization of barley lectin and sporamin in vacuoles of transgenic tobacco plants. Plant Physiol 101(2):451–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plants. Ann Rev Cell Dev Biol 22:53–78

    Article  CAS  Google Scholar 

  • Sturm A, Lienhard S, Schatt S, Hardegger M (1999) Tissue-specific expression of two genes for sucrose synthase in carrot (Daucus carota L.). Plant Mol Biol 39(2):349–360

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H (2003) Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol 133(1):73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang G-Q, Sturm A (1999) Antisense repression of sucrose synthase in carrot (Daucus carota L.) affects growth rather than sucrose partitioning. Plant Mol Biol 41(4):465–479

    Article  CAS  PubMed  Google Scholar 

  • Turgeon R, Medville R (1998) The absence of phloem loading in willow leaves. Proc Natl Acad Sci USA 95(20):12055–12060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wai CM, Zhang J, Jones TC, Nagai C, Ming R (2017) Cell wall metabolism and hexose allocation contribute to biomass accumulation in high yielding extreme segregants of a Saccharum interspecific F2 population. BMC Genom 18(1):773

    Article  Google Scholar 

  • Wang L, Li XR, Lian H, Ni DA, He YK, Chen XY, Ruan YL (2010) Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively. Plant Physiol 154(2):744–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Qu Z, Zhang L, Zhao S, Bi Z, Ji X, Wang X, Wei H (2015) Overexpression of poplar xylem sucrose synthase in tobacco leads to a thickened cell wall and increased height. PLoS ONE 10(3):e0120669

    Article  PubMed  PubMed Central  Google Scholar 

  • Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Plant Sci 19(1):31–67

    Article  CAS  Google Scholar 

  • Winter H, Huber JL, Huber SC (1997) Membrane association of sucrose synthase: changes during the graviresponse and possible control by protein phosphorylation. FEBS Lett 420(2):151–155

    Article  CAS  PubMed  Google Scholar 

  • Wu AM, Hornblad E, Voxeur A, Gerber L, Rihouey C, Lerouge P, Marchant A (2010) Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan. Plant Physiol 153(2):542–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie G, Yang B, Xu Z, Li F, Guo K, Zhang M, Wang L, Zou W, Wang Y, Peng L (2013) Global identification of multiple OsGH9 family members and their involvement in cellulose crystallinity modification in rice. PLoS ONE 8(1):e50171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu SM, Brill E, Llewellyn DJ, Furbank RT, Ruan YL (2012) Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production. Mol Plant 5(2):430–441

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Berggren PO, Tally M (1997) Glucose increases both the plasma membrane number and phosphorylation of insulin-like growth factor II/mannose 6-phosphate receptors. J Biol Chem 272(38):23703–23706

    Article  CAS  PubMed  Google Scholar 

  • Zhang DQ, Xu BH, Yang XH, Zhang ZY, Li BL (2011) The sucrose synthase gene family in Populus: structure, expression, and evolution. Tree Genet Genomes 7(3):443–456

    Article  Google Scholar 

  • Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U (1995) Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J 7(1):97–107

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was funded by the National Nature Science Fund of China (31770640), the 111 Project (B16010), the Foundation Research Fund for the Central Universities of China (No.2572016EAJ2), and Returned Overseas Researcher Fund of Heilongjiang Province (LC2015012).

Author information

Authors and Affiliations

Authors

Contributions

ML and S Finished most of experiment and measurements; YY and MX participated in rising seeding of transgenic lines; Y participated in partly SEM analysis; LL participated in genes expression pattern of poplar; TT participated in Histochemical staining; HW: performed data analysis and wrote manuscript; ZG designed the experiments, performed data analysis, and wrote manuscript; All the authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Zhigang Wei.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s11103-023-01353-5

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 523 KB)

Supplementary material 2 (DOC 223 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, S., Liu, Y. et al. RETRACTED ARTICLE: Overexpression of PsnSuSy1, 2 genes enhances secondary cell wall thickening, vegetative growth, and mechanical strength in transgenic tobacco. Plant Mol Biol 100, 215–230 (2019). https://doi.org/10.1007/s11103-019-00850-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-019-00850-w

Keywords

Navigation