Skip to main content
Log in

Integrated metabolite profiling and transcriptome analysis reveals a dynamic metabolic exchange between pollen tubes and the style during fertilization of Brassica napus

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

In this study, we analyzed the transcriptome and metabolite profile of the style to explore the essential metabolites and specific genes for pollen tube growth of B. napus in vivo.

Abstract

For sexual reproduction of flowering plants, pollen must germinate on the stigma and the pollen tube must grow through the style to deliver the sperm nuclei to the female gametophyte cells. During this process, the rapidly growing pollen tube can cover substantial distances. Despite the clear requirements for energy and cellular building blocks in this process, few studies have examined the role of metabolism in the style for pollen tube elongation. In this study, we comprehensively analyzed the transcriptome and metabolite profiles during pollen germination and pollen tube growth in the style in Brassica napus. We profiled the transcripts and metabolites stored in pollen and identified many transcripts related to metabolic pathways. Mature pollen contained low levels of nutrients, whereas the styles contained high levels of diverse nutrients. The levels of most nutrients in the style, especially metabolites for cell wall synthesis and energy metabolism, rapidly decreased at 2 h after pollination, along with pollen germination and pollen tube elongation through the style. A subset of genes involved in cell wall synthesis and nutrient transport were expressed specifically in styles at 1 h after pollination. These results demonstrated that successful fertilization involves the transcripts and nutrients stored in mature pollen, and specific gene expression and stored nutrients in the style. Therefore, these findings enhance our understanding of fertilization in B. napus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai S, Li L, Chen T, Chong K, Xue Y, Wang T (2006) Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics 6:2504–2529

    Article  PubMed  CAS  Google Scholar 

  • Dai S, Chen T, Chong K, Xue Y, Liu S, Wang T (2007) Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol Cell Proteomics 6:207–230

    Article  PubMed  CAS  Google Scholar 

  • Doblin MS, De Melis L, Newbigin E, Bacic A, Read SM (2001) Pollen tubes of Nicotiana alata express two genes from different β-glucan synthase families. Plant Physiol 125:2040–2052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herrero M (1992) From pollination to fertilization in fruit trees. Plant Growth Regul 11:27–32

    Article  Google Scholar 

  • Hirano K, Aya K, Hobo T, Sakakibara H, Kojima M, Shim RA, Hasegawa Y, Ueguchi-Tanaka M, Matsuoka M (2008) Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol 49:1429–1450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5:4864–4884

    Article  PubMed  CAS  Google Scholar 

  • Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konar R, Linskens H (1966) Physiology and biochemistry of the stigmatic fluid of Petunia hybrida. Planta 71:372–387

    Article  PubMed  CAS  Google Scholar 

  • Mascarenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5:1303–1314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mascarenhas N, Bashe D, Eisenberg A, Willing R, Xiao C, Mascarenhas J (1984) Messenger RNAs in corn pollen and protein synthesis during germination and pollen tube growth. Theor Appl Genet 68:323–326

    Article  PubMed  CAS  Google Scholar 

  • Noir S, Bräutigam A, Colby T, Schmidt J, Panstruga R (2005) A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem Bioph Res Commun 337:1257–1266

    Article  CAS  Google Scholar 

  • Obermeyer G, Fragner L, Lang V, Weckwerth W (2013) Dynamic adaption of metabolic pathways during germination and growth of lily pollen tubes after inhibition of the electron transport chain. Plant Physiol 162:1822–1833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pacini E (1996) Types and meaning of pollen carbohydrate reserves. Sex Plant Reprod 9:362

    Article  CAS  Google Scholar 

  • Parre E, Geitmann A (2005) Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 220:582–592

    Article  PubMed  CAS  Google Scholar 

  • Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA 93:12637–12642

    Article  PubMed  CAS  Google Scholar 

  • Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville CR (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci USA 104:15566–15571

    Article  PubMed  Google Scholar 

  • Qin Y, Leydon AR, Manziello A et al (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 5:e1000621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rae A, Harris P, Bacic A, Clarke A (1985) Composition of the cell walls of Nicotiana alata Link et Otto pollen tubes. Planta 166:128–133

    Article  PubMed  CAS  Google Scholar 

  • Richmond TA, Somerville CR (2000) The cellulose synthase superfamily. Plant Physiol 124:495–498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sankaranarayanan S, Jamshed M, Deb S et al (2013) Deciphering the stigmatic transcriptional landscape of compatible and self-incompatible pollinations in Brassica napus reveals a rapid stigma senescence response following compatible pollination. Mol Plant 6:1988–1991

    Article  PubMed  CAS  Google Scholar 

  • Steer MW, Steer JM (1989) Pollen tube tip growth. New Phytol 111:323–358

    Article  Google Scholar 

  • Tan H, Xiang X, Tang J, Wang X (2016) Nutritional functions of the funiculus in Brassica napus seed maturation revealed by transcriptome and dynamic metabolite profile analyses. Plant Mol Biol 92:539–553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wu HM, Cheung AY (1996) Pollination induces mRNA poly (A) tail-shortening and cell deterioration in flower transmitting tissue. Plant J 9:715–727

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Wang L, Chen C, Xiong G, Tan X-Y, Yang K-Z, Wang Z-C, Zhou Y, Ye D, Chen L-Q (2011) Arabidopsis CSLD1 and CSLD4 are required for cellulose deposition and normal growth of pollen tubes. J Exp Bot 62:5161–5177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang T, Gao C, Yue Y et al (2017) Time-Course transcriptome analysis of compatible and incompatible pollen-stigma interactions in Brassica napus L. Front Plant Sci 8:682

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC project (31671730), the National Key R&D Program of China (2016YFD0100506), and the Fundamental Research Funds for the Central Universities (KYZ201301 and KJSY201510).

Author information

Authors and Affiliations

Authors

Contributions

J. Z. and X. Q. performed most of the research, X. X. and W. Y. completed the metabolite detection, H. T. and X. W. drafted the manuscript. H. T. designed the experiment, supervised the study, and revised the manuscript.

Corresponding authors

Correspondence to Helin Tan or Xiaoe Xiang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2018_740_MOESM1_ESM.tif

Supplemental figure 1: The pistil of B. napus. The arrows show the tissue, and the dotted line shows the cut site for collecting samples. (TIF 753 KB)

11103_2018_740_MOESM2_ESM.tif

Supplemental figure 2: Pollen stained with I2-KI. A: Normal, non-stained pollen, B: pollen stained with 1% I2-KI. (TIF 179 KB)

11103_2018_740_MOESM3_ESM.tif

Supplemental figure 3: Pollen tubes examined by ultraviolet fluorescence microscopy. A: non-pollinated stigma and style; B: pollen germinated on the stigma at 1 hour after pollination; C: pollen germinated on the stigma at 2 hours after pollination; D: pollen germinated on the stigma at 3 hours after pollination; E: pollen germinated on the stigma at 6 hours after pollination. The scale bar = 100 μm. (TIF 1466 KB)

Supplemental table 1 The metabolites detected in mature pollen grain. (XLS 52 KB)

11103_2018_740_MOESM5_ESM.xls

Supplemental table 2 The metabolites detected in style at different stage during pollen germination and pollen tube growth. (XLS 100 KB)

11103_2018_740_MOESM6_ESM.xls

Supplemental table 3 A list of genes encoding enzymes of precursor synthesis for cell wall activated specifically in style. (XLS 33 KB)

11103_2018_740_MOESM7_ESM.xls

Supplemental table 4 The genes encoding enzymes of precursor synthesis for cell wall activated specifically in style. (XLS 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, H., Zhang, J., Qi, X. et al. Integrated metabolite profiling and transcriptome analysis reveals a dynamic metabolic exchange between pollen tubes and the style during fertilization of Brassica napus. Plant Mol Biol 97, 325–335 (2018). https://doi.org/10.1007/s11103-018-0740-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-018-0740-y

Keywords

Navigation