Skip to main content
Log in

A novel mitochondrial orf147 causes cytoplasmic male sterility in pigeonpea by modulating aberrant anther dehiscence

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

A novel open reading frame (ORF) identified and cloned from the A4 cytoplasm of Cajanus cajanifolius induced partial to complete male sterility when introduced into Arabidopsis and tobacco.

Abstract

Pigeonpea (Cajanus cajan L. Millsp.) is the only legume known to have commercial hybrid seed technology based on cytoplasmic male sterility (CMS). We identified a novel ORF (orf147) from the A4 cytoplasm of C. cajanifolius that was created via rearrangements in the CMS line and co-transcribes with the known and unknown sequences. The bi/poly-cistronic transcripts cause gain-of-function variants in the mitochondrial genome of CMS pigeonpea lines having distinct processing mechanisms and transcription start sites. In presence of orf147, significant repression of Escherichia coli growth indicated its toxicity to the host cells and induced partial to complete male sterility in transgenic progenies of Arabidopsis thaliana and Nicotiana tabacum where phenotype co-segregated with the transgene. The male sterile plants showed aberrant floral development and reduced lignin content in the anthers. Gene expression studies in male sterile pigeonpea, Arabidopsis and tobacco plants confirmed down-regulation of several anther biogenesis genes and key genes involved in monolignol biosynthesis, indicative of regulation of retrograde signaling. Besides providing evidence for the involvement of orf147 in pigeonpea CMS, this study provides valuable insights into its function. Cytotoxicity and aberrant programmed cell death induced by orf147 could be important for mechanism underlying male sterility that offers opportunities for possible translation for these findings for exploiting hybrid vigor in other recalcitrant crops as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Araya A, Domec C, Begu D, Litvak S (1992) An in vitro system for the editing of ATP synthase subunit 9 mRNA using wheat mitochondrial extracts. Proc Natl Acad Sci USA 89:1040–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balk J, Leaver CJ (2001) The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13:1803–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergman P, Edqvist J, Farbos I, Glimelius K (2000) Male-sterile tobacco displays abnormal mitochondrial atp1 transcript accumulation and reduced floral ATP/ADP ratio. Plant Mol Biol 42:531–544

    Article  CAS  PubMed  Google Scholar 

  • Bonhomme S, Budar F, Lancelin D, Small I, Defrance M, Pelletier G (1992) Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids. Mol Gen Genet 235:340–348

    Article  CAS  PubMed  Google Scholar 

  • Bonner L, Dickinson H (1989) Anther dehiscence in Lycopersicon esculentum Mill. New Phytol 113:97–115

    Article  Google Scholar 

  • Chen L, Liu Y-G (2014) Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65:579–606

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip, a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Curtis M, Grossniklaus U (2003) A Gateway TM cloning vector set for high-throughput functional analysis of genes in plants. Plant Physiol 133:462–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalvi VA, Saxena KB, Madrap IA (2008) Fertility restoration in cytoplasmic-nuclear male-sterile lines derived from 3 wild relatives of pigeonpea. J Hered 99:671–673

    Article  PubMed  Google Scholar 

  • Dawson J, SÖzen E, Vizir I, Van Waeyenberge S, Wilson ZA, Mulligan BJ (1999) Characterization and genetic mapping of a mutation (ms35) which prevents anther dehiscence in Arabidopsis thaliana by affecting secondary wall thickening in the endothecium. New Phytol 144:213–222

    Article  CAS  Google Scholar 

  • Dewey RE, Levings CS III, Timothy DH (1986) Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell 44:439–449

    Article  CAS  PubMed  Google Scholar 

  • Dieterich JH, Braun HP, Schmitz UK (2003) Alloplasmic male sterility in Brassica napus (CMS “Tournefortii-Stiewe”) is associated with a special gene arrangement around a novel atp9 gene. Mol Genet Genomics 269:723–731

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Chan CY, Lawrence CE (2004) Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 32(Issue supplement 2):W135–W141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duroc Y, Gaillard C, Hiard S, Defrance M, Pelletier G, Budar F (2005) Biochemical and functional characterization of ORF138, a mitochondrial protein responsible for Ogura cytoplasmic male sterility in Brassiceae. Biochimie 87:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Fujii S, Toriyama K (2008) DCW11, Down-regulated gene 11 in CW-type cytoplasmic male sterile rice, encoding mitochondrial protein phosphatase 2C is related to cytoplasmic male sterility. Plant Cell Physiol 49:633–640

    Article  CAS  PubMed  Google Scholar 

  • Fujii S, Toriyama K (2009) Suppressed expression of RETROGRADE-REGULATED MALE STERILITY restores pollen fertility in cytoplasmic male sterile rice plants. Proc Natl Acad Sci USA 106:9513–9518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallagher LJ, Betz SK, Chase CD (2002) Mitochondrial RNA editing truncates a chimeric open reading frame associated with S male-sterility in maize. Curr Genet 42:179–184

    Article  CAS  PubMed  Google Scholar 

  • Geisler DA, Päpke C, Obata T, Nunes-Nesi A, Matthes A, Schneitz K, Maximova E et al (2012) Down regulation of the δ-subunit reduces mitochondrial ATP synthase levels, alters respiration, and restricts growth and gametophyte development in Arabidopsis. Plant Cell 24:2792–2811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:S154–S169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill TA, Day CD, Zondlo SC, Thackeray AG, Irish VF (1998) Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development 125:1711–1721

    CAS  PubMed  Google Scholar 

  • Holec S, Lange H, Kuhn K, Alioua M, Borner T, Gagliardi D (2006) Relaxed transcription in Arabidopsis mitochondria is counter balanced by RNA stability control mediated by poly-adenylation and polynucleotide phosphorylase. Mol Cell Biol 26:2869–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howad W, Tang HV, Pring DR, Kempken F (1999) Nuclear genes from T× CMS maintainer lines are unable to maintain atp6 editing in any anther cell-type in the Sorghum bicolor A3 cytoplasm. Curr Genet 36:62–68

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Wang K, Huang W, Liu G, Gao Y, Wang J, Huang Q et al (2012) The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. Plant Cell 24:109–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igarashi K, Kazama T, Motomura K, Toriyama K (2013) Whole genomic sequencing of RT98 mitochondria derived from Oryza rufipogon and northern blot analysis to uncover a cytoplasmic male sterility-associated gene. Plant Cell Physiol 54:237–243

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Ng KH, Lim TS, Yu H, Meyerowitz EM (2007) The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis. Plant Cell 19:3516–3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwabuchi M, Kyozuka J, Shimamoto K (1993) Processing followed by complete editing of an altered mitochondrial apt6 RNA restores fertility of cytoplasmic male sterile rice. EMBO J 12:1437–1446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwabuchi M, Koizuka N, Fujimoto H, Sakai T, Imamura J (1999) Identification and expression of the kosena radish (Raphanus sativus cv. Kosena) homologue of the ogura radish CMS-associated gene, orf138. Plant Mol Biol 39:183–188

    Article  CAS  PubMed  Google Scholar 

  • Jing B, Heng S, Tong D, Wan Z, Fu T, Tu J, Ma C et al (2011) A male sterility associated cytotoxic protein ORF288 in Brassica juncea causes aborted pollen development. J Exp Bot 63:1285–1295

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Kang JG, Kim B-D (2007) Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper (Capsicum annuum L.). Plant Mol Biol 63:519–532

    Article  CAS  PubMed  Google Scholar 

  • Köhler RH, Horn R, Lössl A, Zetsche K (1991) Cytoplasmic male sterility in sunflower is correlated with the co-transcription of a new open reading frame with the atpA gene. Mol Gen Genet 227:369–376

    Article  PubMed  Google Scholar 

  • Köhler RH, Cao J, Zipfel WR, Webb WW, Hanson MR (1997) Exchange of protein molecules through connections between higher plant plastids. Science 276:2039–2042

    Article  PubMed  Google Scholar 

  • Krishnasamy S, Makaroff CA (1993) Characterization of the radish mitochondrial orfB locus, possible relationship with male sterility in Ogura radish. Curr Genet 24:156–163

    Article  CAS  PubMed  Google Scholar 

  • Kurek I, Ezra D, Begu D, Erel N, Litvak S, Breiman A (1997) Studies on the effects of nuclear background and tissue specificity on RNA editing of the mitochondrial ATP synthase subunits α, 6 and 9 in fertile and cytoplasmic male-sterile (CMS) wheat. Theor Appl Genet 95:1305–1311

    Article  CAS  Google Scholar 

  • Landgren M, Zetterstrand M, Sundberg E, Glimelius K (1996) Alloplasmic male-sterile Brassica lines containing B. tournefortii mitochondria express an ORF 3′ of the atp6 gene and a 32 kDa protein. Plant Mol Biol 32:879–890

    Article  CAS  PubMed  Google Scholar 

  • Laver HK, Reynolds SJ, Moneger F, Leaver CJ (1991) Mitochondrial genome organization and expression associated with cytoplasmic male sterility in sunflower (Helianthus annuus). Plant J 1:185–193

    Article  CAS  PubMed  Google Scholar 

  • Li S, Wan C, Kong J, Zhang Z, Li Y, Zhu Y (2004) Programmed cell death during microgenesis in a Honglian CMS line of rice is correlated with oxidative stress in mitochondria. Funct Plant Biol 31:369–376

    Article  CAS  Google Scholar 

  • Li N, Zhang D-S, Liu H-S, Yin C-S, Li X-X, Liang W-Q, Yuan Z et al (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Pandeya D, Jo Y-D, Liu W-Y, Kang B-C (2013) Reduced activity of ATP synthase in mitochondria causes cytoplasmic male sterility in chili pepper. Planta 237:1097–1109

    Article  CAS  PubMed  Google Scholar 

  • Liljegren S (2012) Phloroglucinol stain for lignin. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot4954

    Google Scholar 

  • Luo D, Xu H, Liu Z, Guo J, Li H, Chen L, Fang C et al (2013) A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet 45:573–577

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie SA, McIntosh L (1999) Higher plant mitochondria. Plant Cell 11:571–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K, Ohme-Takagi M (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu NN, Liang WQ, Yang XJ, Jin WL, Wilson ZA, Hu JP, Zhang DB (2013) EAT1 promote tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun 4:1445

    Article  PubMed  Google Scholar 

  • Nivison HT, Hanson MR (1989) Identification of a mitochondrial protein associated with cytoplasmic male sterility in petunia. Plant Cell 1:1121–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng X, Wang K, Hu C, Zhu Y, Wang T, Yang J, Tong J, Li S, Zhu Y (2010) The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice. BMC Plant Biol 10:125. https://doi.org/10.1186/1471-2229-10-125

    Article  PubMed  PubMed Central  Google Scholar 

  • Pring DR, Tang HV, Chase CD, Siripant MN (2006) Microspore gene expression associated with cytoplasmic male sterility and fertility restoration in sorghum. Sex Plant Reprod 19:25–35

    Article  CAS  Google Scholar 

  • Reddy PS, Mahanty S, Kaul T, Nair S, Sopory SK, Reddy MK (2008) A high-throughput genome-walking method and its use for cloning unknown flanking sequences. Anal Biochem 381:248–253

    Article  CAS  PubMed  Google Scholar 

  • Reynolds SM, Käll L, Riffle ME, Bilmes JA, Noble WS (2008) Transmembrane topology and signal peptide prediction using dynamic Bayesian networks. PLoS Comput Biol 4:e1000213. https://doi.org/10.1371/journal.pcbi.1000213

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabar M, Gagliardi D, Balk J, Leaver CJ (2003) ORFB is a subunit of F1F (O)-ATP synthase, insight into the basis of cytoplasmic male sterility in sunflower. EMBO Rep 4:381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena KB (2015) From concept to field: evolution of hybrid pigeonpea technology in India. Ind J Genet 75:279–293

    Google Scholar 

  • Saxena KB, Hingane AJ (2015) Male sterility systems in major field crops and their potential role in crop improvement. In: Plant biology and biotechnology, plant diversity, organization, function and improvement. Springer, New Delhi, pp 639–656

    Google Scholar 

  • Saxena KB, Kumar RV, Srivastava N, Shiying B (2005) A cytoplasmic-nuclear male-sterility system derived from a cross between Cajanus cajanifolius and Cajanus cajan. Euphytica 145:289–294

    Article  Google Scholar 

  • Saxena KB, Ravikoti VK, Dalvi VA, Pandey LB, Gaddikeri G (2010) Development of cytoplasmic nuclear male sterility, its inheritance, and potential use in hybrid pigeonpea breeding. J Hered 101:497–503

    Article  CAS  PubMed  Google Scholar 

  • Saxena KB, Sameerkumar CV, Hingane AJ, Nagesh Kumar MV, Vijaykumar RA, Saxena RK, Patil S, Varshney RK (2016) Hybrid ICPH 2740 assures quantum jump in pigeonpea productivity in peninsular India. J Food Legum 29:142–144

    Google Scholar 

  • Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3:175–180

    Article  Google Scholar 

  • Sinha P, Saxena KB, Saxena RK, Singh VK, Suryanarayana V, Sameerkumar CV, Katta MAVS. et al (2015) Association of nad7a gene with cytoplasmic male sterility in pigeonpea (Cajanus cajan). Plant Genome 8:1–12

    Article  CAS  Google Scholar 

  • Sorensen AM, Kröber S, Unte US, Huijser P, Dekker K, Saedler H (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J 33:413–423

    Article  CAS  PubMed  Google Scholar 

  • Steiner-Lange S, Unte US, Eckstein L, Yang C, Wilson ZA, Schmelzer E, Dekker K, Saedler H (2003) Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers. Plant J 34:519–528

    Article  CAS  PubMed  Google Scholar 

  • Sunkara S, Bhatnagar-Mathur P, Sharma KK (2013) Isolation and functional characterization of two novel seed specific promoters from legumes. Appl Biochem Biotechnol 172:325–339

    Article  Google Scholar 

  • Tang HV, Pring DR, Shaw LC, Salazar RA, Muza FR, Yan B, Schertz KF (1996) Transcript processing internal to a mitochondrial open reading frame is correlated with fertility restoration in male-sterile sorghum. Plant J 10:123–133

    Article  CAS  PubMed  Google Scholar 

  • Tang HV, Chen W, Pring DR (1999) Mitochondrial orf107 transcription, editing, and nucleolytic cleavage conferred by the gene Rf3 are expressed in sorghum pollen. Sex Plant Reprod 12:53–59

    Article  CAS  Google Scholar 

  • Thevenin J, Pollet B, Letarnec B, Saulnier L, Gissot L, Maia-Grondard A, Lapierre C, Jouanin L (2011) The simultaneous repression of CCR and CAD, two enzymes of the lignin biosynthetic pathway, results in sterility and dwarfism in Arabidopsis thaliana. Mol Plant 4:70–82

    Article  CAS  PubMed  Google Scholar 

  • Tuteja R, Saxena RK, Davila J, Shah T, Chen W, Xiao Y-L, Fan G et al (2013) Cytoplasmic male sterility-associated chimeric open reading frames identified by mitochondrial genome sequencing of four Cajanus genotypes. DNA Res 20:485–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vizcay-Barrena G, Wilson ZA (2006) Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot 57:2709–2717

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D et al (2006) Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18:676–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen L, Ruesch KL, Ortega VM, Kamps TL, Gabay-Laughnan S, Chase CD (2003) A nuclear restorer-of-fertility mutation disrupts accumulation of mitochondrial ATP synthase subunit alpha in developing pollen of S male-sterile maize. Genetics 165:771–779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson ZA, Zhang DB (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Bot 60:1479–1492

    Article  CAS  PubMed  Google Scholar 

  • Wilson ZA, Morroll SM, Dawson J, Swarup R, Tighe PJ (2001) The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J 28:27–39

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Zhang F, Zheng Y (2006) The 5′ stem-loop and its role in mRNA stability in maize S cytoplasmic male sterility. Plant J 47:864–872

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Yang Y, Zhang Z, Chen W, Zhang C, Zhang L, Zou S, Ma Z (2008) Expression of the nuclear gene TaF(A)d is under mitochondrial retrograde regulation in anthers of male sterile wheat plants with timopheevii cytoplasm. J Exp Bot 59:1375–1381

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Yang CY, Yuan Z, Zhang DS, Gondwe MY, Ding ZW, Liang W, Zhang D, Wilson ZA (2010) The ABORTED MICROSPORES regulatory network is required for post-meiotic male reproductive development in Arabidopsis thaliana. Plant Cell 22:91–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto MP, Shinada H, Onodera Y, Komaki C, Mikami T, Kubo T (2008) A male sterility-associated mitochondrial protein in wild beets causes pollen disruption in transgenic plants. Plant J 54:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Xu Z, Song J, Conner K, Vizcay-Barrena G, Wilson ZA (2007) Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell 19:534–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Liu X, Yan X, Zhang M (2010) Mitochondrially-targeted expression of a cytoplasmic male sterility-associated orf220 gene causes male sterility in Brassica juncea. BMC Plant Biol 10:231

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshimi M, Kitamura Y, Isshiki S, Saito T, Yasumoto K, Terachi T, Yamagishi H (2013) Variations in the structure and transcription of the mitochondrial atp and cox genes in wild Solanum species that induce male sterility in eggplant (S. melongina). Theor Appl Genet 126:1851–1859

    Article  CAS  PubMed  Google Scholar 

  • Young EG, Hanson MR (1987) A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated. Cell 50:41–49

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Sun YJ, Timofejeva L, Chen CB, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133:3085–3095

    Article  CAS  PubMed  Google Scholar 

  • Zhang D-S, Liang W-Q, Yuan Z, Li N, Shi J, Wang J, Liu Y-M, Zhang D-B (2008) Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol Plant 1:599–610

    Article  CAS  PubMed  Google Scholar 

  • Zhang DB, Luo X, Zhu L (2011) Cytological analysis and genetic control of rice anther development. J Genet Genomics 38:379–390

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Chen H, Li H, Gao JF, Jiang H, Wang C, Guan YF, Yang ZN (2008) Defective in tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J 55:266–277

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was undertaken as part of the CGIAR Research Program on Grain Legumes. Thanks to Rahul Nitnavare, Chavvi Srivastava, Divya and Kedarinath for their technical assistance with the transformation and gene expression studies and PS Rao for photography. Critical reviews of the manuscript by Drs. Gopalan Selvaraj, Rajeev Gupta and Damaris Odeny are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

PBM and KKS conceptualized, designed and analyzed all experimental data. RG conducted expression studies in prokaryotic system, Sequence analysis was done by PSR, BPR assisted in cloning and transformation; DSR was involved in qPCR and Northern blot studies. RKS provided inputs on mitochondrial genomic sequence information and analysis. CVSK provided pigeonpea seed material. PBM and KKS conducted histochemical studies. PBM, KKS, RG and PSR contributed to manuscript preparation.

Corresponding authors

Correspondence to Pooja Bhatnagar-Mathur or Kiran K. Sharma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. PBM, RG and KKS are inventors on the patent applications of this work and are current employees of ICRISAT who owns the IP.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 102 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatnagar-Mathur, P., Gupta, R., Reddy, P.S. et al. A novel mitochondrial orf147 causes cytoplasmic male sterility in pigeonpea by modulating aberrant anther dehiscence. Plant Mol Biol 97, 131–147 (2018). https://doi.org/10.1007/s11103-018-0728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-018-0728-7

Keywords

Navigation