Skip to main content
Log in

Production of biologically active human thioredoxin 1 protein in lettuce chloroplasts

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The production of human therapeutic proteins in plants provides opportunities for low-cost production, and minimizes the risk of contamination from potential human pathogens. Chloroplast genetic engineering is a particularly promising strategy, because plant chloroplasts can produce large amounts of foreign target proteins. Oxidative stress is a key factor in various human diseases. Human thioredoxin 1 (hTrx1) is a stress-induced protein that functions as an antioxidant against oxidative stress, and overexpression of hTrx1 has been shown to suppress various diseases in mice. Therefore, hTrx1 is a prospective candidate as a new human therapeutic protein. We created transplastomic lettuce expressing hTrx1 under the control of the psbA promoter. Transplastomic plants grew normally and were fertile. The hTrx1 protein accumulated to approximately 1% of total soluble protein in mature leaves. The hTrx1 protein purified from lettuce leaves was functionally active, and reduced insulin disulfides. The purified protein protected mouse insulinoma line 6 cells from damage by hydrogen peroxide, as reported previously for a recombinant hTrx1 expressed in Escherichia coli. This is the first report of expression of the biologically active hTrx1 protein in plant chloroplasts. This research opens up possibilities for plant-based production of hTrx1. Considering that this expression host is an edible crop plant, this transplastomic lettuce may be suitable for oral delivery of hTrx1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahsan MK, Nakamura H, Tanito M, Yamada K, Utsumi H, Yodoi J (2005) Thioredoxin-1 suppresses lung injury and apoptosis induced by diesel exhaust particles (DEP) by scavenging reactive oxygen species and by inhibiting DEP-induced downregulation of Akt. Free Radic Biol Med 39:1549–1559

    Article  Google Scholar 

  • Apel W, Schulze WX, Bock R (2010) Identification of protein stability determinants in chloroplasts. Plant J 63:636–650

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chebolu S, Daniell H (2009) Chloroplast-derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality. Curr Top Microbiol Immunol 332:33–54

    Article  PubMed  CAS  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Lee SB, Panchal T, Wiebe PO (2001a) Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol 311:1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Streatfield SJ, Wycoff K (2001b) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7:84–91

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Chebolu S, Kumar S, Singleton M, Falconer R (2005a) Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine 23:1779–1783

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Kumar S, Dufourmantel N (2005b) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23:238–245

    Article  PubMed  CAS  Google Scholar 

  • Davoodi-Semiromi A, Schreiber M, Nalapalli S, Verma D, Singh ND, Banks RK, Chakrabarti D, Daniell H (2010) Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol J 8:223–242

    Article  PubMed  CAS  Google Scholar 

  • Fernández-San Millán A, Mingo-Castel A, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper-express and purify Human Serum Albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol J 1:71–79

    Article  PubMed  Google Scholar 

  • Giddings G, Allison G, Brooks D, Carter A (2000) Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol 18:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Hamada Y, Miyata S, Nii-Kono T, Kitazawa R, Kitazawa S, Higo S, Fukunaga M, Ueyama S, Nakamura H, Yodoi J, Fukagawa M, Kasuga M (2007) Overexpression of thioredoxin1 in transgenic mice suppresses development of diabetic nephropathy. Nephrol Dial Transplant 22:1547–1557

    Article  PubMed  CAS  Google Scholar 

  • Holmgren A (1979) Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J Biol Chem 254:9627–9632

    PubMed  CAS  Google Scholar 

  • Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271

    Article  PubMed  CAS  Google Scholar 

  • Holmgren A, Björnstedt M (1995) Thioredoxin and thioredoxin reductase. Methods Enzymol 252:199–208

    Article  PubMed  CAS  Google Scholar 

  • Hoshino T, Nakamura H, Okamoto M, Kato S, Araya S, Nomiyama K, Oizumi K, Young HA, Aizawa H, Yodoi J (2003) Redox-active protein thioredoxin prevents proinflammatory cytokine- or bleomycin-induced lung injury. Am J Respir Crit Care Med 168:1075–1083

    Article  PubMed  Google Scholar 

  • Howard JA, Hood E (2005) Bioindustrial and biopharmaceutical products produced in plants. Adv Agron 85:91–124

    Article  CAS  Google Scholar 

  • Kanamoto H, Yamashita A, Asao H, Okumura S, Takase H, Hattori M, Yokota A, Tomizawa K (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res 15:205–217

    Article  PubMed  CAS  Google Scholar 

  • Kasuno K, Nakamura H, Ono T, Muso E, Yodoi J (2003) Protective roles of thioredoxin, a redox-regulating protein, in renal ischemia/reperfusion injury. Kidney Int 64:1273–1282

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki K, Nishio A, Nakamura H, Uchida K, Fukui T, Ohana M, Yoshizawa H, Ohashi S, Tamaki H, Matsuura M, Asada M, Nishi T, Nakase H, Toyokuni S, Liu W, Yodoi J, Okazaki K, Chiba T (2005) Helicobacter felis-induced gastritis was suppressed in mice overexpressing thioredoxin-1. Lab Invest 85:1104–1117

    Article  PubMed  CAS  Google Scholar 

  • Leelavathi S, Reddy VS (2003) Chloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol Breed 11:49–58

    Article  CAS  Google Scholar 

  • Lelivelt CL, McCabe MS, Newell CA, Desnoo CB, van Dun KM, Birch-Machin I, Gray JC, Mills KH, Nugent JM (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58:763–774

    Article  PubMed  CAS  Google Scholar 

  • Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol 21:20–28

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  PubMed  CAS  Google Scholar 

  • Mason HS, Warzecha H, Mor T, Arntzen CJ (2002) Edible plant vaccines: applications for prophylactic and therapeutic molecular medicine. Trends Mol Med 8:324–329

    Article  PubMed  CAS  Google Scholar 

  • Matsuda M, Masutani H, Nakamura H, Miyajima S, Yamauchi A, Yonehara S, Uchida A, Irimajiri K, Horiuchi A, Yodoi J (1991) Protective activity of adult T cell leukemia-derived factor (ADF) against tumor necrosis factor-dependent cytotoxicity on U937 cells. J Immunol 147:3837–3841

    PubMed  CAS  Google Scholar 

  • Meuillet EJ, Mahadevan D, Berggren M, Coon A, Powis G (2004) Thioredoxin-1 binds to the C2 domain of PTEN inhibiting PTEN’s lipid phosphatase activity and membrane binding: a mechanism for the functional loss of PTEN’s tumor suppressor activity. Arch Biochem Biophys 429:123–133

    Article  PubMed  CAS  Google Scholar 

  • Meyer Y, Buchanan BB, Vignols F, Reichheld JP (2009) Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 43:335–367

    Article  PubMed  CAS  Google Scholar 

  • Mitsui A, Hamuro J, Nakamura H, Kondo N, Hirabayashi Y, Ishizaki-Koizumi S, Hirakawa T, Inoue T, Yodoi J (2002) Overexpression of human thioredoxin in transgenic mice controls oxidative stress and life span. Antioxid Redox Signal 4:693–696

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakamura H, Nakamura K, Yodoi J (1997) Redox regulation of cellular activation. Annu Rev Immunol 15:351–369

    Article  PubMed  CAS  Google Scholar 

  • Nakamura H, Mitsui A, Yodoi J (2002a) Thioredoxin overexpression in transgenic mice. Methods Enzymol 347:436–440

    Article  PubMed  CAS  Google Scholar 

  • Nakamura H, Tamura S, Watanabe I, Iwasaki T, Yodoi J (2002b) Enhanced resistancy of thioredoxin-transgenic mice against influenza virus-induced pneumonia. Immunol Lett 82:165–170

    Article  PubMed  CAS  Google Scholar 

  • Nakamura H, Masutani H, Yodoi J (2006) Extracellular thioredoxin and thioredoxin-binding protein 2 in control of cancer. Semin Cancer Biol 16:444–451

    Article  PubMed  CAS  Google Scholar 

  • Nakamura H, Hoshino Y, Okuyama H, Matsuo Y, Yodoi J (2009) Thioredoxin 1 delivery as new therapeutics. Adv Drug Deliv Rev 61:303–309

    Article  PubMed  CAS  Google Scholar 

  • Oey M, Lohse M, Kreikemeyer B, Bock R (2009) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57:436–445

    Article  PubMed  CAS  Google Scholar 

  • Ohashi S, Nishio A, Nakamura H, Kido M, Ueno S, Uza N, Inoue S, Kitamura H, Kiriya K, Asada M, Tamaki H, Matsuura M, Kawasaki K, Fukui T, Watanabe N, Nakase H, Yodoi J, Okazaki K, Chiba T (2006) Protective roles of redox-active protein thioredoxin-1 for severe acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 290:G772–G781

    Article  PubMed  CAS  Google Scholar 

  • Okuyama H, Nakamura H, Shimahara Y, Araya S, Kawada N, Yamaoka Y, Yodoi J (2003) Overexpression of thioredoxin prevents acute hepatitis caused by thioacetamide or lipopolysaccharide in mice. Hepatology 37:1015–1025

    Article  PubMed  CAS  Google Scholar 

  • Okuyama H, Nakamura H, Shimahara Y, Uyama N, Kwon YW, Kawada N, Yamaoka Y, Yodoi J (2005) Overexpression of thioredoxin prevents thioacetamide-induced hepatic fibrosis in mice. J Hepatol 42:117–123

    Article  PubMed  CAS  Google Scholar 

  • Petrides D, Sapidou E, Calandranis J (1995) Computer-aided process analysis and economic evaluation for biosynthetic human insulin production-A case study. Biotechnol Bioeng 48:529–541

    Article  PubMed  CAS  Google Scholar 

  • Powis G, Montfort WR (2001) Properties and biological activities of thioredoxins. Annu Rev Biophys Biomol Struct 30:421–455

    Article  PubMed  CAS  Google Scholar 

  • Ruhlman T, Ahangari R, Devine A, Samsam M, Daniell H (2007) Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts–oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol J 5:495–510

    Article  PubMed  CAS  Google Scholar 

  • Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152:2088–2104

    Article  PubMed  CAS  Google Scholar 

  • Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Hoshino Y, Hara T, Muro S, Nakamura H, Mishima M, Yodoi J (2008) Thioredoxin-1 ameliorates cigarette smoke-induced lung inflammation and emphysema in mice. J Pharmacol Exp Ther 325:380–388

    Article  PubMed  CAS  Google Scholar 

  • Shioji K, Kishimoto C, Nakamura H, Masutani H, Yuan Z, Oka S, Yodoi J (2002) Overexpression of thioredoxin-1 in transgenic mice attenuates adriamycin-induced cardiotoxicity. Circulation 106:1403–1409

    Article  PubMed  CAS  Google Scholar 

  • Staub JM, Garcia B, Graves J, Hajdukiewicz PT, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D, Ye G, Russell DA (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913–917

    Article  PubMed  CAS  Google Scholar 

  • Tagaya Y, Maeda Y, Mitsui A, Kondo N, Matsui H, Hamuro J, Brown N, Arai K, Yokota T, Wakasugi H, Yodoi J (1989) ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO J 8:757–764

    PubMed  CAS  Google Scholar 

  • Tamaki H, Nakamura H, Nishio A, Nakase H, Ueno S, Uza N, Kido M, Inoue S, Mikami S, Asada M, Kiriya K, Kitamura H, Ohashi S, Fukui T, Kawasaki K, Matsuura M, Ishii Y, Okazaki K, Yodoi J, Chiba T (2006) Human thioredoxin-1 ameliorates experimental murine colitis in association with suppressed macrophage inhibitory factor production. Gastroenterology 131:1110–1121

    Article  PubMed  CAS  Google Scholar 

  • Tan A, Nakamura H, Kondo N, Tanito M, Kwon YW, Ahsan MK, Matsui H, Narita M, Yodoi J (2007) Thioredoxin-1 attenuates indomethacin-induced gastric mucosal injury in mice. Free Radic Res 41:861–869

    Article  PubMed  CAS  Google Scholar 

  • Watanabe R, Nakamura H, Masutani H, Yodoi J (2010) Anti-oxidative, anti-cancer and anti-inflammatory actions by thioredoxin 1 and thioredoxin-binding protein-2. Pharmacol Ther 127:261–270

    Article  PubMed  CAS  Google Scholar 

  • Weichsei A, Gasdaska JR, Powis G, Montfort WR (1996) Crystal structure of reduced, oxidized, and mutated human thioredoxins: evidence for a regulatory homodimer. Structure 4:735–751

    Article  Google Scholar 

  • Yabuta Y, Tamoi M, Yamamoto K, Tomizawa K, Yokota A, Shigeoka S (2008) Molecular design of photosynthesis-elevated chloroplasts for mass accumulation of a foreign protein. Plant Cell Physiol 49:375–385

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Yamato E, Toyoda S, Tashiro F, Ikegami H, Yodoi J, Miyazaki J (2008) Transgenic expression of antioxidant protein thioredoxin in pancreatic beta cells prevents progression of type 2 diabetes mellitus. Antioxid Redox Signal 10:43–49

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jun-ichi Miyazaki (Osaka University) for the MIN6 cells. We also thank Kazuko Sano, Hanae Sugita, Yaka Ichikawa, and Harumi Sakuyama for technical assistance. This study was conducted as a part of the project of the Development of Fundamental Technologies for Production of High-value Materials using Transgenic Plants (2006–2010) of the Ministry of Economy, Trade, and Industry (METI) of Japan, and the Program for Promotion of Fundamental Studies in Health Sciences of National Institute of Biomedical Innovation (NIBIO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiho Yokota.

Additional information

The authors S. Lim and H. Ashida have contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 195 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, S., Ashida, H., Watanabe, R. et al. Production of biologically active human thioredoxin 1 protein in lettuce chloroplasts. Plant Mol Biol 76, 335–344 (2011). https://doi.org/10.1007/s11103-011-9745-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9745-5

Keywords

Navigation