Skip to main content
Log in

Biogenesis of thylakoid networks in angiosperms: knowns and unknowns

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Aerobic life on Earth depends on oxygenic photosynthesis. This fundamentally important process is carried out within an elaborate membranous system, called the thylakoid network. In angiosperms, thylakoid networks are constructed almost from scratch by an intricate, light-dependent process in which lipids, proteins, and small organic molecules are assembled into morphologically and functionally differentiated, three-dimensional lamellar structures. In this review, we summarize the major events that occur during this complex, largely elusive process, concentrating on those that are directly involved in network formation and potentiation and highlighting gaps in our knowledge, which, as hinted by the title, are substantial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam Z, Rudella A, van Wijk KJ (2006) Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts. Curr Opin Plant Biol 9:234–240

    PubMed  CAS  Google Scholar 

  • Ahlert D, Ruf S, Bock R (2003) Plastid protein synthesis is required for plant development in tobacco. Proc Natl Acad Sci USA 100:15730–15735

    PubMed  CAS  Google Scholar 

  • Albertsson P (2001) A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci 6:349–358

    PubMed  CAS  Google Scholar 

  • Albertsson PA, Andreasson E (2004) The constant proportion of grana and stroma lamellae in plant chloroplasts. Physiol Plant 121:334–342

    PubMed  CAS  Google Scholar 

  • Albrecht V, Ingenfeld A, Apel K (2006) Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality. Plant Mol Biol 60:507–518

    PubMed  CAS  Google Scholar 

  • Anderson JM (1981) Consequences of spatial separation of photosystem 1 and 2 in thylakoid membranes of higher plant chloroplasts. FEBS Lett 124:1–10

    CAS  Google Scholar 

  • Anderson JM (1999) Insights into the consequences of grana stacking of thylakoid membranes in vascular plants: a personal perspective. Aust J Plant Physiol 26:625–639

    CAS  Google Scholar 

  • Anderson JM, Chow WS, De Las Rivas J (2008) Dynamic flexibility in the structure and function of photosystem II in higher plant thylakoid membranes: the grana enigma. Photosynth Res 98:575–587

    PubMed  CAS  Google Scholar 

  • Andersson MX, Sandelius AS (2004) A chloroplast-localized vesicular transport system: a bio-informatics approach. BMC Genomics 5:40

    PubMed  Google Scholar 

  • Apel K, Santel HJ, Redlinger TE, Falk H (1980) The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Isolation and characterization of the NADPH:protochlorophyllide oxidoreductase. Eur J Biochem 111:251–258

    PubMed  CAS  Google Scholar 

  • Arvidsson P-O, Sundby C (1999) A model for the topology of the chloroplast thylakoid membrane. Aust J Plant Physiol 26:687–694

    CAS  Google Scholar 

  • Aseeva E, Ossenbuhl F, Sippel C, Cho WK, Stein B, Eichacker LA, Meurer J, Wanner G, Westhoff P, Soll J, Vothknecht UC (2007) Vipp1 is required for basic thylakoid membrane formation but not for the assembly of thylakoid protein complexes. Plant Physiol Biochem 45:119–128

    PubMed  CAS  Google Scholar 

  • Babiychuk E, Müller F, Eubel H, Braun HP, Frentzen M, Kushnir S (2003) Arabidopsis phosphatidylglycerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J 33:899–909

    PubMed  CAS  Google Scholar 

  • Baginsky S, Siddique A, Gruissem W (2004) Proteome analysis of tobacco bright yellow-2 (BY-2) cell culture plastids as a model for undifferentiated heterotrophic plastids. J Proteome Res 3:1128–1137

    PubMed  CAS  Google Scholar 

  • Bang WY, Hata A, Jeong IS, Umeda T, Masuda T, Chen J, Yoko I, Suwastika IN, Kim DW, Im CH, Lee BH, Lee Y, Lee KW, Shiina T, Bahk JD (2009) AtObgC, a plant ortholog of bacterial Obg, is a chloroplast-targeting GTPase essential for early embryogenesis. Plant Mol Biol 71:379–390

    PubMed  CAS  Google Scholar 

  • Barber J (1982) Influence of surface charges on thylakoid structure and function. Annu Rev Plant Physiol 33:261–295

    CAS  Google Scholar 

  • Barton MK (2010) Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Dev Biol 341:95–113

    PubMed  CAS  Google Scholar 

  • Benning C (2009) Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu Rev Cell Dev Biol 25:71–91

    PubMed  CAS  Google Scholar 

  • Benning C, Xu C, Awai K (2006) Non-vesicular and vesicular lipid trafficking involving plastids. Curr Opin Plant Biol 9:241–247

    PubMed  CAS  Google Scholar 

  • Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall’osto L, Morosinotto T, Bassi R (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 284:15255–15266

    PubMed  CAS  Google Scholar 

  • Block MA, Dorne AJ, Joyard J, Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. J Biol Chem 258:13281–13286

    PubMed  CAS  Google Scholar 

  • Blomqvist LA, Ryberg M, Sundqvist C (2008) Proteomic analysis of highly purified prolamellar bodies reveals their significance in chloroplast development. Photosynth Res 96:37–50

    PubMed  CAS  Google Scholar 

  • Brangeon J, Mustardy L (1979) The ontogenic assembly of intra-chloroplast lamallae viewed in 3-dimensions. Biol Cell 36:71–80

    Google Scholar 

  • Carde JP, Joyard J, Douce R (1982) Electron microscopic studies of envelope membranes from spinach plastids. Biol Cell 44:315–324

    Google Scholar 

  • Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M (1999) Mutations in the arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell 11:57–68

    PubMed  CAS  Google Scholar 

  • Chen M, Choi Y, Voytas DF, Rodermel S (2000) Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease. Plant J 22:303–313

    PubMed  Google Scholar 

  • Chigri F, Sippel C, Kolb M, Vothknecht UC (2009) Arabidopsis OBG-Like GTPase (AtOBGL) is localized in chloroplasts and has an essential function in embryo development. Mol Plant 2:1373–1383

    PubMed  CAS  Google Scholar 

  • Chow WS (1999) Grana formation: entropy-assisted local order in chloroplasts? Aust J Plant Physiol 26:641–647

    CAS  Google Scholar 

  • Chow WS, Miller C, Anderson JM (1991) Surface charges, the heterogeneous lateral distribution of the two photosystems, and thylakoid stacking. Biochim Biophys Acta 1057:69–77

    CAS  Google Scholar 

  • Chow WS, Kim EH, Horton P, Anderson JM (2005) Granal stacking of thylakoid membranes in higher plant chloroplasts: the physicochemical forces at work and the functional consequences that ensue. Photochem Photobiol Sci 4:1081–1090

    PubMed  CAS  Google Scholar 

  • Chuartzman SG, Nevo R, Shimoni E, Charuvi D, Kiss V, Ohad I, Brumfeld V, Reich Z (2008) Thylakoid membrane remodeling during state transitions in arabidopsis. Plant Cell 20:1029–1039

    PubMed  CAS  Google Scholar 

  • De Greef J, Butler WL, Roth TF (1971) Greening of etiolated bean leaves in far red light. Plant Physiol 47:457–464

    PubMed  Google Scholar 

  • Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39

    PubMed  CAS  Google Scholar 

  • Dormann P, Hoffmann-Benning S, Balbo I, Benning C (1995) Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol. Plant Cell 7:1801–1810

    PubMed  CAS  Google Scholar 

  • Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    PubMed  CAS  Google Scholar 

  • Epand RM (1998) Lipid polymorphism and protein-lipid interactions. Biochim Biophys Acta 1376:353–368

    PubMed  CAS  Google Scholar 

  • Ferro M, Brugiere S, Salvi D, Seigneurin-Berny D, Court M, Moyet L, Ramus C, Miras S, Mellal M, Le Gall S, Kieffer-Jaquinod S, Bruley C, Garin J, Joyard J, Masselon C, Rolland N (2010) AT_CHLORO: a comprehensive chloroplast proteome database with subplastidiallocalization and curated information on envelope proteins. Mol Cell Proteomics 9:1063–1084

    PubMed  CAS  Google Scholar 

  • Finazzi G, Rappaport F, Furia A, Fleischmann M, Rochaix JD, Zito F, Forti G (2002) Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep 3:280–285

    PubMed  CAS  Google Scholar 

  • Forger JM, Bogorad L (1973) Steps in the acquisition of photosynthetic competence by plastids of maize. Plant Physiol 52:491–497

    PubMed  CAS  Google Scholar 

  • Fristedt R, Granath P, Vener AV (2010) A protein phosphorylation threshold for functional stacking of plant photosynthetic membranes. PLoS One 5:e10963

    PubMed  Google Scholar 

  • Gao H, Sage TL, Osteryoung KW (2006) FZL, an FZO-like protein in plants, is a determinant of thylakoid and chloroplast morphology. Proc Natl Acad Sci USA 103:6759–6764

    PubMed  CAS  Google Scholar 

  • Garab G, Mustardy L (1999) Role of LHCII-containing macrodomains in the structure, function and dynamics of grana. Aust J Plant Physiol 26:649–658

    CAS  Google Scholar 

  • Garab G, Lohner K, Laggner P, Farkas T (2000) Self-regulation of the lipid content of membranes by non-bilayer lipids: a hypothesis. Trends Plant Sci 5:489–494

    PubMed  CAS  Google Scholar 

  • Garcia C, Khan NZ, Nannmark U, Aronsson H (2010) The chloroplast protein CPSAR1, dually localized in the stroma and the inner envelope membrane, is involved in thylakoid biogenesis. Plant J (in press)

  • Griffiths WT (1978) Reconstitution of chlorophyllide formation by isolated etioplast membranes. Biochem J 174:681–692

    PubMed  CAS  Google Scholar 

  • Gunning BES (1965) The greening process in plastids. I. The structure of the prolamellar body. Protoplasma 60:111–130

    Google Scholar 

  • Haferkamp S, Haase W, Pascal AA, van Amerongen H, Kirchhoff H (2010) Efficient light harvesting by photosystem II requires an optimized protein packing density in grana thylakoids. J Biol Chem 285:17020–17028

    PubMed  CAS  Google Scholar 

  • Hagio M, Sakurai I, Sato S, Kato T, Tabata S, Wada H (2002) Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. Plant Cell Physiol 43:1456–1464

    PubMed  CAS  Google Scholar 

  • Harańczyk H, Strzalka K, Bayerl T, Klose G, Blicharski JS (1985) 31P NMR measurements in photosynthetic membranes. Photosynthetica 19:414–416

    Google Scholar 

  • Harańczyk H, Strzałka K, Dietrich W, Blicharski JS (1995) 31P-NMR observation of the temperature and glycerol induced non-lamellar phase formation in wheat thylakoid membranes. J Biol Phys 21:125–139

    Google Scholar 

  • Horton P (1999) Are grana necessary for regulation of light harvesting? Aust J Plant Physiol 26:659–699

    CAS  Google Scholar 

  • Horton P, Ruban AV, Rees D, Pascal AA, Noctor G, Young AJ (1991) Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein complex. FEBS Lett 292:1–4

    PubMed  CAS  Google Scholar 

  • Horton P, Wentworth M, Ruban A (2005) Control of the light harvesting function of chloroplast membranes: the LHCII-aggregation model for non-photochemical quenching. FEBS Lett 579:4201–4206

    PubMed  CAS  Google Scholar 

  • Huang J, Taylor JP, Chen JG, Uhrig JF, Schnell DJ, Nakagawa T, Korth KL, Jones AM (2006) The plastid protein THYLAKOID FORMATION1 and the plasma membrane G-protein GPA1 interact in a novel sugar-signaling mechanism in Arabidopsis. Plant Cell 18:1226–1238

    PubMed  CAS  Google Scholar 

  • Huang X, Zhang X, Yang S (2009) A novel chloroplast-localized protein EMB1303 is required for chloroplast development in Arabidopsis. Cell Res 19:1205–1216

    PubMed  CAS  Google Scholar 

  • Ioannidis NE, Ortigosa SM, Veramendi J, Pinto-Marijuan M, Fleck I, Carvajal P, Kotzabasis K, Santos M, Torne JM (2009) Remodeling of tobacco thylakoids by over-expression of maize plastidial transglutaminase. Biochim Biophys Acta 1787:1215–1222

    PubMed  CAS  Google Scholar 

  • Jahns P, Latowski D, Strzalka K (2009) Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim Biophys Acta 1787:3–14

    PubMed  CAS  Google Scholar 

  • Jarvis P, Dormann P, Peto CA, Lutes J, Benning C, Chory J (2000) Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc Natl Acad Sci USA 97:8175–8179

    PubMed  CAS  Google Scholar 

  • Kaftan D, Brumfeld V, Nevo R, Scherz A, Reich Z (2002) From chloroplasts to photosystems: in situ scanning force microscopy on intact thylakoid membranes. EMBO J 21:6146–6153

    PubMed  CAS  Google Scholar 

  • Kaneko Y, Keegstra K (1996) Plastid biogenesis in embryonic pea leaf cells during early germination. Protoplasma 195:59–67

    Google Scholar 

  • Kanervo E, Suorsa M, Aro EM (2005) Functional flexibility and acclimation of the thylakoid membrane. Photochem Photobiol Sci 4:1072–1080

    PubMed  CAS  Google Scholar 

  • Kanervo E, Singh M, Suorsa M, Paakkarinen V, Aro E, Battchikova N, Aro EM (2008) Expression of protein complexes and individual proteins upon transition of etioplasts to chloroplasts in pea (Pisum sativum). Plant Cell Physiol 49:396–410

    PubMed  CAS  Google Scholar 

  • Kelly AA, Dormann P (2004) Green light for galactolipid trafficking. Curr Opin Plant Biol 7:262–269

    PubMed  CAS  Google Scholar 

  • Kessler F, Schnell D (2009) Chloroplast biogenesis: diversity and regulation of the protein import apparatus. Curr Opin Cell Biol 21:494–500

    PubMed  CAS  Google Scholar 

  • Kim EH, Chow WS, Horton P, Anderson JM (2005) Entropy-assisted stacking of thylakoid membranes. Biochim Biophys Acta 1708:187–195

    PubMed  CAS  Google Scholar 

  • Kirchhoff H (2008) Molecular crowding and order in photosynthetic membranes. Trends Plant Sci 13:201–207

    PubMed  CAS  Google Scholar 

  • Kiss AZ, Ruban AV, Horton P (2008) The PsbS protein controls the organization of the photosystem II antenna in higher plant thylakoid membranes. J Biol Chem 283:3972–3978

    PubMed  CAS  Google Scholar 

  • Kleffmann T, von Zychlinski A, Russenberger D, Hirsch-Hoffmann M, Gehrig P, Gruissem W, Baginsky S (2007) Proteome dynamics during plastid differentiation in rice. Plant Physiol 143:912–923

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Kondo M, Fukuda H, Nishimura M, Ohta H (2007) Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis. Proc Natl Acad Sci USA 104:17216–17221

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Nakamura Y, Ohta H (2009) Type A and type B monogalactosyldiacylglycerol synthases are spatially and functionally separated in the plastids of higher plants. Plant Physiol Biochem 47:518–525

    PubMed  CAS  Google Scholar 

  • Kramer DM, Avenson TJ, Edwards GE (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9:349–357

    PubMed  CAS  Google Scholar 

  • Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Vothknecht UC, Soll J, Westhoff P (2001) VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc Natl Acad Sci USA 98:4238–4242

    PubMed  CAS  Google Scholar 

  • Krumova SB, Dijkema C, de Waard P, Van As H, Garab G, van Amerongen H (2008) Phase behavior of phosphatidylglycerol in spinach thylakoid membranes as revealed by 31P-NMR. Biochim Biophys Acta 1778:997–1003

    PubMed  CAS  Google Scholar 

  • Kwon KC, Cho MH (2008) Deletion of the chloroplast-localized AtTerC gene product in Arabidopsis thaliana leads to loss of the thylakoid membrane and to seedling lethality. Plant J 55:428–442

    PubMed  CAS  Google Scholar 

  • Lee AG (2000) Membrane lipids: it’s only a phase. Curr Biol 10:R377–R380

    PubMed  CAS  Google Scholar 

  • Lipowsky R (1995) Generic interactions of flexible membranes. In: Lipowsky R, Sackman E (eds) Structure and dynamics of membranes. Elsevier, Amsterdam, pp 521–602

    Google Scholar 

  • Liu C, Willmund F, Golecki JR, Cacace S, Hess B, Markert C, Schroda M (2007) The chloroplast HSP70B-CDJ2-CGE1 chaperones catalyse assembly and disassembly of VIPP1 oligomers in Chlamydomonas. Plant J 50:265–277

    PubMed  CAS  Google Scholar 

  • Lonosky PM, Zhang X, Honavar VG, Dobbs DL, Fu A, Rodermel SR (2004) A proteomic analysis of maize chloroplast biogenesis. Plant Physiol 134:560–574

    PubMed  CAS  Google Scholar 

  • Lopez-Juez E (2007) Plastid biogenesis, between light and shadows. J Exp Bot 58:11–26

    PubMed  CAS  Google Scholar 

  • Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582:3625–3631

    PubMed  CAS  Google Scholar 

  • Morre DJ, Sellden G, Sundqvist C, Sandelius AS (1991) Stromal low temperature compartment derived from the inner membrane of the chloroplast envelope. Plant Physiol 97:1558–1564

    PubMed  CAS  Google Scholar 

  • Motohashi R, Yamazaki T, Myouga F, Ito T, Ito K, Satou M, Kobayashi M, Nagata N, Yoshida S, Nagashima A, Tanaka K, Takahashi S, Shinozaki K (2007) Chloroplast ribosome release factor 1 (AtcpRF1) is essential for chloroplast development. Plant Mol Biol 64:481–497

    PubMed  CAS  Google Scholar 

  • Muhlethaler K, Frey-Wyssling A (1959) Entwicklung und Struktur der Proplastiden. J Biophys Biochem Cytol 6:507–512

    Google Scholar 

  • Mullineaux CW (2005) Function and evolution of grana. Trends Plant Sci 10:521–525

    PubMed  CAS  Google Scholar 

  • Mullineaux CW, Emlyn-Jones D (2005) State transitions: an example of acclimation to low-light stress. J Exp Bot 56:389–393

    PubMed  CAS  Google Scholar 

  • Mullineaux CW, Pascal AA, Horton P, Holzwarth AR (1993) Excitation-energy quenching in aggregates of the LHC II chlorophyll-protein complex: a time-resolved fluorescence study. Biochim Biophys Acta 1141:23–28

    CAS  Google Scholar 

  • Mulo P, Sirpio S, Suorsa M, Aro EM (2008) Auxiliary proteins involved in the assembly and sustenance of photosystem II. Photosynth Res 98:489–501

    PubMed  CAS  Google Scholar 

  • Mustardy L (1996) Development of thylakoid membrane stacking. In: Ort DR (ed) Oxygenic photosynthesis: the light reactions. Kluwer Academic Publishers, Dodrecht, pp 59–68

    Google Scholar 

  • Mustardy L, Garab G (2003) Granum revisited. A three-dimensional model–where things fall into place. Trends Plant Sci 8:117–122

    PubMed  CAS  Google Scholar 

  • Mustardy L, Buttle K, Steinbach G, Garab G (2008) The three-dimensional network of the thylakoid membranes in plants: quasihelical model of the granum-stroma assembly. Plant Cell 20:2552–2557

    PubMed  CAS  Google Scholar 

  • Nevo R, Charuvi D, Shimoni E, Schwarz R, Kaplan A, Ohad I, Reich Z (2007) Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. EMBO J 26:1467–1473

    PubMed  CAS  Google Scholar 

  • Nevo R, Charuvi D, Chuartzman SG, Shimoni E, Tsabari O, Reich Z (2009) Architecture and plasticity of thylakoid membrane networks. In: Wada HaM N (ed) Lipids in photosynthesis. Springer, Berlin, pp 295–328

    Google Scholar 

  • Pali T, Garab G, Horvath LI, Kota Z (2003) Functional significance of the lipid-protein interface in photosynthetic membranes. Cell Mol Life Sci 60:1591–1606

    PubMed  CAS  Google Scholar 

  • Paolillo DJ Jr (1970) The three-dimensional arrangement of intergranal lamellae in chloroplasts. J Cell Sci 6:243–255

    PubMed  Google Scholar 

  • Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14:321–332

    PubMed  CAS  Google Scholar 

  • Robertson D, Laetsch WM (1974) Structure and function of developing barley plastids. Plant Physiol 54:148–159

    PubMed  CAS  Google Scholar 

  • Ryberg M, Sundqvist C (1982) Characterization of prolamellar bodies and prothylakoids fractionated from wheat etioplasts. Physiol Plant 56:125–132

    CAS  Google Scholar 

  • Sakamoto W, Tamura T, Hanba-Tomita Y, Sodmergen, Murata M (2002) The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant alleles. Genes Cells 7:769–780

    PubMed  CAS  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    PubMed  CAS  Google Scholar 

  • Schunemann D (2007) Mechanisms of protein import into thylakoids of chloroplasts. Biol Chem 388:907–915

    PubMed  Google Scholar 

  • Shen Z, Li P, Ni RJ, Ritchie M, Yang CP, Liu GF, Ma W, Liu GJ, Ma L, Li SJ, Wei ZG, Wang HX, Wang BC (2009) Label-free quantitative proteomics analysis of etiolated maize seedling leaves during greening. Mol Cell Proteomics 8:2443–2460

    PubMed  CAS  Google Scholar 

  • Shimoni E, Rav-Hon O, Ohad I, Brumfeld V, Reich Z (2005) Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography. Plant Cell 17:2580–2586

    PubMed  CAS  Google Scholar 

  • Siebertz HP, Heinz E, Joyard J, Douce R (1980) Labelling in vivo and in vitro of molecular species of lipids from chloroplast envelopes and thylakoids. Eur J Biochem 108:177–185

    PubMed  CAS  Google Scholar 

  • Simidjiev I, Stoylova S, Amenitsch H, Javorfi T, Mustardy L, Laggner P, Holzenburg A, Garab G (2000) Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc Natl Acad Sci USA 97:1473–1476

    PubMed  CAS  Google Scholar 

  • Sperling U, Franck F, van Cleve B, Frick G, Apel K, Armstrong GA (1998) Etioplast differentiation in arabidopsis: both PORA and PORB restore the prolamellar body and photoactive protochlorophyllide-F655 to the cop1 photomorphogenic mutant. Plant Cell 10:283–296

    PubMed  CAS  Google Scholar 

  • Strugger S (1950) Ober den bau der proplastiden und chloroplasten. Natuwissenschaften 37:166–167

    Google Scholar 

  • Takechi K, Sodmergen, Murata M, Motoyoshi F, Sakamoto W (2000) The YELLOW VARIEGATED (VAR2) locus encodes a homologue of FtsH, an ATP-dependent protease in Arabidopsis. Plant Cell Physiol 41:1334–1346

    PubMed  CAS  Google Scholar 

  • Ting CS, Hsieh C, Sundararaman S, Mannella C, Marko M (2007) Cryo-electron tomography reveals the comparative three-dimensional architecture of Prochlorococcus, a globally important marine cyanobacterium. J Bacteriol 189:4485–4493

    PubMed  CAS  Google Scholar 

  • Trissl HW, Wilhelm C (1993) Why do thylakoid membranes from higher plants form grana stacks? Trends Biochem Sci 18:415–419

    PubMed  CAS  Google Scholar 

  • Vershinin A (1999) Biological functions of carotenoids–diversity and evolution. Biofactors 10:99–104

    PubMed  CAS  Google Scholar 

  • von Wettstein D (1959) The effect of genetic factors on the submicroscopic structures of the chloroplast. J Ultrastruct Res 3:234–240

    Google Scholar 

  • Von Wettstein D, Gough S, Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7:1039–1057

    Google Scholar 

  • von Zychlinski A, Kleffmann T, Krishnamurthy N, Sjolander K, Baginsky S, Gruissem W (2005) Proteome analysis of the rice etioplast: metabolic and regulatory networks and novel protein functions. Mol Cell Proteomics 4:1072–1084

    Google Scholar 

  • Vothknecht UC, Westhoff P (2001) Biogenesis and origin of thylakoid membranes. Biochim Biophys Acta 1541:91–101

    PubMed  CAS  Google Scholar 

  • Wang Q, Sullivan RW, Kight A, Henry RL, Huang J, Jones AM, Korth KL (2004) Deletion of the chloroplast-localized Thylakoid formation1 gene product in Arabidopsis leads to deficient thylakoid formation and variegated leaves. Plant Physiol 136:3594–3604

    PubMed  CAS  Google Scholar 

  • Waters MT, Langdale JA (2009) The making of a chloroplast. EMBO J 28:2861–2873

    PubMed  CAS  Google Scholar 

  • Wellburn FA, Wellburn AR (1971) Developmental changes occurring in isolated intact etioplasts. J Cell Sci 9:271–287

    PubMed  CAS  Google Scholar 

  • Westphal S, Soll J, Vothknecht UC (2001) A vesicle transport system inside chloroplasts. FEBS Lett 506:257–261

    PubMed  CAS  Google Scholar 

  • Wetzel CM, Jiang CZ, Meehan LJ, Voytas DF, Rodermel SR (1994) Nuclear-organelle interactions: the immutans variegation mutant of Arabidopsis is plastid autonomous and impaired in carotenoid biosynthesis. Plant J 6:161–175

    PubMed  CAS  Google Scholar 

  • Wu D, Wright DA, Wetzel C, Voytas DF, Rodermel S (1999) The IMMUTANS variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell 11:43–56

    PubMed  CAS  Google Scholar 

  • Yadav RK, Girke T, Pasala S, Xie M, Reddy GV (2009) Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci USA 106:4941–4946

    PubMed  CAS  Google Scholar 

  • Zaltsman A, Ori N, Adam Z (2005) Two types of FtsH protease subunits are required for chloroplast biogenesis and Photosystem II repair in Arabidopsis. Plant Cell 17:2782–2790

    PubMed  CAS  Google Scholar 

  • Zhang L, Wei Q, Wu W, Cheng Y, Hu G, Hu F, Sun Y, Zhu Y, Sakamoto W, Huang J (2009) Activation of the heterotrimeric G protein alpha-subunit GPA1 suppresses the ftsh-mediated inhibition of chloroplast development in Arabidopsis. Plant J 58:1041–1053

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the laboratories of Z.A. and Z.R. was supported by a joint grant from the F.I.R.S.T. (Bikura) program of the Israel Science Foundation (grant no. 1282/09). Z.R. wishes to thank financial support from the Israel Science Foundation (grant no. 1005/07), Dr. Josef Cohn Minerva center for Biomembrane Research, and the Carolito Stiftung. Z.A. thanks the Israel Science Foundation (grant no. 385/08) and the US—Israel Binational Agricultural Research and Development Fund (BARD, grant no. 4228-09) for their support. Members of both labs are acknowledged for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zach Adam or Ziv Reich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adam, Z., Charuvi, D., Tsabari, O. et al. Biogenesis of thylakoid networks in angiosperms: knowns and unknowns. Plant Mol Biol 76, 221–234 (2011). https://doi.org/10.1007/s11103-010-9693-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9693-5

Keywords

Navigation