Skip to main content

Advertisement

Log in

Investigation of Vietnamese plants for potential anticancer agents

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Higher plants continue to afford humankind with many new drugs, for a variety of disease types. In this review, recent phytochemical and biological progress is presented for part of a collaborative multi-institutional project directed towards the discovery of new antitumor agents. The specific focus is on bioactive natural products isolated and characterized structurally from tropical plants collected in Vietnam. The plant collection, identification, and processing steps are described, and the natural products isolated from these species are summarized with their biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd El-Razek MH, Mohamed AE-HH, Ahmed AA (2007) Prenylated flavonoids from Tephrosia apollinea. Heterocycles 71:2477–2490

    Article  CAS  Google Scholar 

  • American Cancer Society (2013). Cancer facts & figures 2013. Atlanta: American Cancer Society. http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-036845.pdf. Accessed Sept 2013

  • Appendino G, Fontana G, Pollastro F (2010) Natural products drug discovery. In: Verpoorte R (ed) Comprehensive natural products chemistry II, vol 3. Elsevier, Oxford, UK, pp 205–236

  • Bailly C (2009) Ready for a comeback of natural products in oncology. Biochem Pharmacol 77:1447–1457

    Article  CAS  PubMed  Google Scholar 

  • Bueno Pérez L, Pan L, Sass EJ, Gupta SV, Lehman A, Kinghorn AD, Lucas DM (2012) Potentiating effect of the flavonolignan (−)-hydnocarpin in combination with vincristine in a sensitive and P-gp-expressing acute lymphoblastic leukemia cell line. Phytother Res. doi:10.1002/ptr.4903

    PubMed  Google Scholar 

  • Bueno Pérez L, Li J, Lantvit DD, Pan L, Ninh TN, Chai H-B, Soejarto DD, Swanson SM, Lucas DM, Kinghorn AD (2013) Bioactive constituents of Indigofera spicata. J Nat Prod 76:1498–1504

    Article  PubMed  Google Scholar 

  • Chen ST, Dou J, Temple R, Agarwal R, Wu K-M, Walker S (2008) New therapies from old medicines. Nat Biotechnol 26:1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012–3043

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Balunas MJ, Kim J-A, Lantvit DD, Chin Y-W, Chai H-B, Sugiarso S, Kardono LBS, Fong HHS, Pezzuto JM, Swanson SM, Carcache de Blanco EJ, Kinghorn AD (2009) Bioactive 5,6-dihydro-α-pyrone derivatives from Hyptis brevipes. J Nat Prod 72:1165–1169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dou J (2013) Botanical new drugs: from INDs to NDAs. Presentation at the 54th Annual Meeting of the American Society of Pharmacognosy, St. Louis, MO. Planta Med 79:836

    Article  Google Scholar 

  • El-Elimat T, Zhang X, Jarjoura D, Moy FJ, Orjala J, Kinghorn AD, Pearce CJ, Oberlies NH (2012) Chemical diversity of metabolites from fungi, cyanobacteria, and plants relative to FDA-approved anticancer agents. ACS Med Chem Lett 3:645–649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feher M, Schmidt JM (2003) Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 43:218–227

    Article  CAS  PubMed  Google Scholar 

  • Gatti L, Zuco V, Zaffaroni N, Perego P (2013) Drug combinations with proteasome inhibitors in antitumor therapy. Curr Pharm Des 19:4094–4114

    Article  CAS  PubMed  Google Scholar 

  • Gordaliza M (2007) Natural products as leads to anticancer drugs. Clin Transl Oncol 9:767–776

    Article  CAS  PubMed  Google Scholar 

  • Inada A, Sorano T, Murata H, Inatomi Y, Darnaedy D, Nakanishi T (2001) Diamide derivatives and cycloartanes from the leaves of Aglaia elliptica. Chem Pharm Bull 49:1226–1228

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Hawke N, Baldwin AS (2006) NF-κB and IKK as therapeutic targets in cancer. Cell Death Differ 13:738–747

    Article  CAS  PubMed  Google Scholar 

  • Kinghorn AD, Carcache de Blanco EJ, Chai H-B, Orjala J, Farnsworth NR, Soejarto DD, Oberlies NH, Wani MC, Kroll DJ, Pearce CJ, Swanson SM, Kramer RA, Rose WC, Fairchild CR, Vite GD, Emanuel S, Jarjoura D, Cope FO (2009) Discovery of anticancer agents of diverse natural origin. Pure Appl Chem 81:1051–1063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kinghorn AD, Pan L, Fletcher JN, Chai H-B (2011) The relevance of higher plants in lead compound discovery programs. J Nat Prod 74:1539–1555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kingston DGI (2011) Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod 74:496–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kingston DGI, Tamarkin L, Paciotti GF (2012) Conformationally constrained and nanoparticle-targeted paclitaxels. Pure Appl Chem 84:1455–1467

    Article  CAS  Google Scholar 

  • Lachance H, Wetzel S, Kumar K, Waldmann H (2012) Charting, navigating, and populating natural product chemical space for drug discovery. J Med Chem 55:5989–6001

    Article  CAS  PubMed  Google Scholar 

  • Loub WD, Farnsworth NR, Soejarto DD, Quinn ML (1985) NAPRALERT: computer handling of natural product research data. J Chem Inform Comp Sci 25:99–103

    Article  CAS  Google Scholar 

  • Lucas DM, Still PC, Bueno Perez L, Grever MR, Kinghorn AD (2010) Potential of plant-derived natural products in the treatment of leukemia and lymphoma. Curr Drug Targets 11:812–822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malcolm JR, Liu C, Neilson RP, Hansen L, Hannah L (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Conserv Biol 20:538–548

    Article  PubMed  Google Scholar 

  • Matthew S, Pan L, Shen Q, Kinghorn AD, Swanson SM, Carcache de Blanco EJ (2011) Dichamanetin, a C-benzylated flavonoid from Piper sarmentosum inhibits cell growth and induces G1 cell cycle arrest in cancer cells through mitochondrial-mediated apoptosis. Presentation at the 102nd Annual Meeting of the American Association of Cancer Research, Orlando, FL, April 2–April 6

  • Mi Q, Pezzuto JM, Farnsworth NR, Wani MC, Kinghorn AD, Swanson SM (2009) Use of the in vivo hollow fiber assay in natural products drug discovery. J Nat Prod 72:573–580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Newman DJ, Giddings L-A (2013) Natural products as leads to antitumor drugs. Phytochem Rev. doi:10.1007/s111-013-9292-6

    Google Scholar 

  • Orjala J, Oberlies NH, Pearce CJ, Swanson SM, Kinghorn AD (2012) Discovery of potential anticancer agents from aquatic cyanobacteria, filamentous fungi, and tropical plants. In: Tringali C (ed) Bioactive compounds from natural sources, natural products as lead compounds in drug discovery, 2nd edn. Taylor & Francis, London, pp 37–63

    Google Scholar 

  • Pan L, Chin Y-W, Chai H-B, Ninh TN, Soejarto DD, Kinghorn AD (2009) Activity-guided isolation of cytotoxic constituents of Brucea javanica collected in Vietnam. Bioorg Med Chem 17:2219–2224; ibid. 19:1562 (2011)

    Google Scholar 

  • Pan L, Matthew S, Chai H-B, Ninh TN, Kleinholz NM, Green-Church KB, Soejarto DD, Carcache de Blanco EJ, Kinghorn AD (2011a) Isolation and analysis of aristolochic acid I and other compounds from the roots and other plant parts of Antidesma bunius. Presentation at the 52nd Annual Meeting of the American Society of Pharmacognosy, San Diego, CA, July 30–Aug 3

  • Pan L, Matthew S, Lantvit DD, Zhang X, Ninh TN, Chai H-B, Carcache de Blanco EJ, Soejarto DD, Swanson SM, Kinghorn AD (2011b) Bioassay-guided isolation of constituents of Piper sarmentosum using a mitochondrial transmembrane potential assay. J Nat Prod 74:2193–2199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pan L, Chai H-B, Kinghorn AD (2012a) Discovery of new anticancer agents from higher plants. Front Biosci (Schol Ed) 4:142–156

    Article  CAS  Google Scholar 

  • Pan L, Yong Y, Muñoz Acuña U, Deng Y, Lantvit DD, Ninh TN, Chai H-B, Carcache de Blanco EJ, Soejarto DD, Swanson SM, Kinghorn AD (2012b) Isolation, structure elucidation, and biological evaluation of 16,23-epoxycucurbitacin constituents of Elaeocarpus chinensis. J Nat Prod 75:444–452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pan L, Muñoz Acuña U, Li J, Jena N, Ninh TN, Pannell CM, Chai H-B, Fuchs JR, Carcache de Blanco EJ, Soejarto DD, Kinghorn AD (2013) Bioactive flavaglines and other constituents isolated from Aglaia perviridis. J Nat Prod 76:394–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pearce CJ, Lantvit DD, Shen Q, Jarjoura D, Zhang X, Oberlies NH, Kroll DJ, Wani MC, Orjala J, Soejarto DD, Farnsworth NR, Carcache de Blanco EJ, Fuchs JR, Kinghorn AD, Swanson SM (2012) Use of the hollow fiber assay for discovery of novel anticancer agents from fungi. In: Keller N, Turner G (eds) Fungal secondary metabolism: methods and protocols, vol 944., Humana Press/SpringerTotowa, NJ, pp 267–277

    Chapter  Google Scholar 

  • Rahier NJ, Thomas CJ, Hecht SM (2005) Camptothecin and its analogs. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. CRC Taylor & Francis, Boca Raton, pp 5–21

    Google Scholar 

  • Rai PK, Lalramnghinglova H (2011) Threathened and less known ethnomedicinal plants of an Indo-Burma hotspot region: conservation implications. Environ Monit Assess 178:53–62

    Article  PubMed  Google Scholar 

  • Rao EV, Raju NR (1984) Two flavonoids from Tephrosia purpurea. Phytochemistry 23:2339–2342

    Article  CAS  Google Scholar 

  • Ren Y, Lantvit DD, Carcache de Blanco EJ, Kardono LBS, Riswan S, Chai H-B, Cottrell CE, Farnsworth NR, Swanson SM, Ding Y, Li XC, Marais JPJ, Ferreira D, Kinghorn AD (2010) Proteasome-inhibitory and cytotoxic constituents of Garcinia lateriflora: absolute configuration of caged xanthones. Tetrahedron 66:5311–5320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren Y, Matthew S, Lantvit DD, Ninh TN, Chai H-B, Fuchs JR, Soejarto DD, Carcache de Blanco EJ, Swanson SM, Kinghorn AD (2011) Cytotoxic and NFkB inhibitory constituents of the stems of Cratoxylum cochinchinense and their semi-synthetic analogues. J Nat Prod 74:1117–1125

    Google Scholar 

  • Siegel R, Naishadham D (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    Article  PubMed  Google Scholar 

  • Spear SA, Burns SS, Oblinger JL, Ren Y, Pan L, Kinghorn AD, Welling DB, Chang LS (2013) Natural compounds as potential treatments of NF2-deficient schwannoma and meningioma: cucurbitacin D and goyazensolide. Otol Neurotol 34:1519–1527

    Article  PubMed  Google Scholar 

  • Still PC, Yi B, González Muskus T, Pan L, Pavlovicz R, Chai H-B, Ninh TN, Li C, Soejarto DD, McKay D, Kinghorn AD (2013) Alkaloids from Microcos paniculata with cytotoxic and nicotinic receptor antagonistic activities. J Nat Prod 76:243–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thoison O, Fahy J, Dumontet V, Chiaroni A, Riche C, Tri MV, Sévenet T (2000) Cytotoxic prenylxanthones from Garcinia bracteata. J Nat Prod 63:441–446

    Article  CAS  PubMed  Google Scholar 

  • Waterman PG, Khalid SA (1980) The major flavonoids of the seed of Tephrosoa apollinea. Phytochemistry 19:909–915

    Article  CAS  Google Scholar 

  • Zhang Y, Talalay P, Cho C-G, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA 89:2399–2403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by Grant P01 CA125066 (awarded to A. D. K.) from the National Cancer Institute, NIH, Bethesda, MD. Additional support was awarded to C. B. N. and L. B. P. from NIH grant T32 GM008512, as part of the Chemistry–Biology Interface Program (CBIP), and to P. C. S. and L. B. P. from the Raymond W. Doskotch Fellowship in Natural Products Chemistry from the College of Pharmacy, The Ohio State University, as well as a pre-doctoral fellowship awarded to C. B. N. from the American Foundation for Pharmaceutical Education (AFPE). All plants were collected under the terms of agreement between the University of Illinois at Chicago and the Institute of Ecology and Biological Resources of the Vietnam Academy of Science and Technology, Hanoi, Vietnam. Particular thanks are due to the Directors of Hoanglien National Park, Hon Ba Forest Reserve, Kego Nature Reserve Park, and Nui Chua National Park for granting permission to collect the plants specimens, and to the Director of IEBR for overseeing the field operation in the plant collections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Douglas Kinghorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bueno Pérez, L., Still, P.C., Naman, C.B. et al. Investigation of Vietnamese plants for potential anticancer agents. Phytochem Rev 13, 727–739 (2014). https://doi.org/10.1007/s11101-014-9335-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-014-9335-7

Keywords

Navigation