Skip to main content

Advertisement

Log in

Influence of environmental abiotic factors on the content of saponins in plants

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Saponins are a large group of secondary metabolites occurring in significant amounts in many plant species. However, the saponin content of plants is variable and it can be influenced by the surrounding environment. The local geoclimate, seasonal changes, external conditions such as light, temperature, humidity and soil fertility, as well as cultivation techniques, affect both the quantitative amount and qualitative composition of saponins. Such variation substantially impacts on the quality and properties of wild and cultivated plants exploited for pharmaceutical, nutritional and industrial applications. This review summarizes the available data on the effects of abiotic environmental factors on saponin level in plants, especially those of considerable economic importance, highlighting current problems such as the reduction in natural plant resources, over-exploitation and destruction of wild habitats, climate shifts as well as the consequences of the growing demand for plant-derived medicinal and industrial products. The need for a theoretical basis for a reasonable harvest, attempts at the domestication of wild plant species and the development of new agricultural technologies allowing high production under optimized conditions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Afreen F, Zobayed SMA, Kozai T (2005) Spectral quality and UV-B stress stimulate glycyrrhizin concentration of Glycyrrhiza uralensis in hydroponic and pot system. Plant Physiol Biochem 43:1074–1081

    Article  PubMed  CAS  Google Scholar 

  • Agrell J, Oleszek W, Stochmal A, Olsen M, Anderson P (2003) Herbivore-induced responses in alfalfa (Medicago sativa). J Chem Ecol 29:303–320

    Article  CAS  Google Scholar 

  • Balandrin MF (1996) Commercial utilization of plant-derived saponins: an overview of medicinal, pharmaceutical and industrial applications. Adv Exp Med Biol 404:1–14

    Article  PubMed  CAS  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2006) Chenopodium quinoa – an Indian perspective. Ind Crops Prod 23:73–87

    Article  CAS  Google Scholar 

  • Borella JC, Duarte DP, Novaretti AAG, Menezes A Jr, França SC, Rufato CB, Santos PAS (2006) Seasonal variability in the content of saponins from Baccharis trimera (Less.) DC (Carqueja) and isolation of flavone. Rev Bras Farmacogn 16:557–561

    Article  CAS  Google Scholar 

  • Castellón-Olivares JJ, Rublűo-Islas A, Sepūlveda-Betancourt J, Ruiz-Campos G (2002) Environmental effects on biomass productivity of wild populations of Yucca schidigera in Baja California, Mexico. Southwest Nat 47:576–584

    Article  Google Scholar 

  • Cheeke PR (1998) Saponins: surprising benefits of desert plants. In: The Linus Pauling Institute Newsletter (pp 4–5). Oregon State University, Corvallis

  • Cheeke PR (2000) Actual and potential applications of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition. J Anim Sci 77:1–10

    Google Scholar 

  • Comanor PL, Clark WH (1988) Productivity pattern in a Baja California, Mexico, population of Yucca schidigera. Cactus Succul J 60:138–142

    Google Scholar 

  • Copaja SV, Blackburn C, Carmona R (2003) Variation of saponin contents in Quillaja saponaria Molina. Wood Sci Technol 37:103–108

    Article  CAS  Google Scholar 

  • Dalsgaard K, Hilgers L, Trouve G (1990) Classical and new approaches to adjuvant use in domestic food animals. Adv Veterin Sci Compar Med 35:121–159

    Article  CAS  Google Scholar 

  • Darokar MP, Khanuja SPS, Shasany AK, Kumar S (2001) Low levels of genetic diversity detected by RAPD analysis in geographically distinct accessions of Bacopa monnieri. Genet Resour Crop Evol 48:555–558

    Article  Google Scholar 

  • Dinchev D, Janda B, Evstatieva L, Oleszek W, Aslani MR, Kostova I (2008) Distribution of steroidal saponins in Tribulus terrestris from different geographical regions. Phytochemistry 69:176–186

    Article  PubMed  CAS  Google Scholar 

  • Dong TT, Cui XM, Song ZH, Zhao KJ, Ji ZN, Lo CK, Tsim KW (2003) Chemical assessment of roots of Panax notoginseng in China: regional and seasonal variations in its active constituents. J Agric Food Chem 51:4617–4623

    Article  PubMed  CAS  Google Scholar 

  • Farley D (2005) Tribulus terrestris: Bulgarian versus the rest of the world. In: The MuscleTalker Issue 35, http://www.muscletalk.co.uk/newsletter-0305.aspx

  • Feng W, Wang WQ, Zhao PR (2008) Content variation of saponins and flavonoids from growing and harvesting time of Glycyrrhiza uralensis. J Chin Med Mater 31:184–186

    CAS  Google Scholar 

  • Fenwick DE, Oakenfull D (2006) Saponin content of food plants and some prepared foods. J Sci Food Agric 34:186–191

    Article  Google Scholar 

  • Fournier AR, Proctor JTA, Gauthier L, Khanizadeh S, Bélanger A, Gosselin A, Dorais M (2003) Understory light and root ginsenosides in forest-grown Panax quinquefolius. Phytochemistry 63:777–782

    Article  PubMed  CAS  Google Scholar 

  • Francis G, Kerem Z, Makkar HPS, Becker K (2002) The biological action of saponins in animal systems: a review. Br J Nutr 88:587–605

    Article  PubMed  CAS  Google Scholar 

  • Golawska S, Leszczynski B, Oleszek W (2006) Effect of low and high-saponin lines of alfalfa on pea aphid. J Insect Physiol 52:737–743

    Article  CAS  Google Scholar 

  • Güçlü-Üstündağ Ö, Mazza G (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 47:231–258

    Article  PubMed  CAS  Google Scholar 

  • Hanuš LO, Rezanka T, Dembitsky VM (2003) A trinorsesterterpene glycoside from the North American fern Woodwardia virginica (L.) Smith. Phytochemistry 63:869–875

    Article  PubMed  CAS  Google Scholar 

  • Haralampidis K, Trojanowska M, Osbourn AE (2002) Biosynthesis of triterpenoid saponins in plants. Adv Biochem Eng Biotechnol 75:31–49

    PubMed  CAS  Google Scholar 

  • Henry M (2005) Saponins and phylogeny: example of the “gypsogenin group” saponins. Phytochem Rev 4:89–94

    Article  CAS  Google Scholar 

  • Henry M, Rochd M, Bennini B (1991) Biosynthesis and accumulation of saponins in Gypsophila paniculata. Phytochemistry 30:1819–1821

    Article  CAS  Google Scholar 

  • Hoagland RA, Zablotowicz RM, Renny KN (1996) Studies on the phytotoxicity of saponins on weed and crop plants. Adv Exp Med Biol 405:57–73

    Article  PubMed  CAS  Google Scholar 

  • Hong DYQ, Lau AJ, Yeo CL, Yang CR, Koh HL, Hong Y (2005) Genetic diversity and variation of saponin contents in Panax notoginseng roots from a single farm. J Agric Food Chem 53:8460–8467

    Article  PubMed  CAS  Google Scholar 

  • Hostettmann KA, Marston A (eds) (1995) Saponins. Cambridge University Press, Cambridge

    Google Scholar 

  • Houle A, Chapman CA, Vickery WL (2007) Intratree variation in fruit production and implications for Primate foraging. Int J Primatol 28:1197–1217

    Article  Google Scholar 

  • Huang HQ, Zhang X, Xu ZX, Su J, Yan SK, Zhang WD (2009) Fast determination of saikosaponins in Bupleurum by rapid resolution liquid chromatography with evaporative scattering detection. J Pharm Biomed Anal 49:1048–1055

    Article  PubMed  CAS  Google Scholar 

  • Ilieva A (1994) Changes in saponin content of lucerne for forage. In: Management and breeding of perennial lucerne for diversified purposes. REUR Technical Series, vol 36. FAO, Rome, Italy, pp 125–127

  • Jacobsen SE (1998) Developmental stability of quinoa under European conditions. Ind Crop Prod 7:169–174

    Article  Google Scholar 

  • Jancurová M, Minarovičová L, Dandár A (2009) Quinoa – a review. Czech J Food Sci 27:71–79

    Google Scholar 

  • Jochum GM, Mudge KW, Thomas RB (2007) Elevated temperatures increase leaf senescence and root secondary metabolite concentration in the understory herb Panax quinquefolius (Araliaceae). Am J Bot 94:819–826

    Article  PubMed  CAS  Google Scholar 

  • Joshi DD, Uniyal RC (2008) Different chemo types of Gokhru (Tribulus terrestris): a herb used for improving physique and physical performance. Int J Green Pharm 2:158–161

    Article  Google Scholar 

  • Kalinin VI, Silchenko AS, Avilov SA, Stonik VA, Smirnov AV (2005) Sea cucumbers triterpene glycosides, the recent progress in structural elucidation and chemotaxonomy. Phytochem Rev 4:221–236

    Article  CAS  Google Scholar 

  • Kalinowska M, Zimowski J, Pączkowski C, Wojciechowski ZA (2005) The formation of sugar chains in triterpenoid saponin and glycoalkaloids. Phytochem Rev 4:237–257

    Article  CAS  Google Scholar 

  • Kamstrup S, San Martin R, Doberti A, Grande H, Dalsgaard K (2000) Preparation and characterisation of quillaja saponin with less heterogeneity than Quil-A. Vaccine 18:2244–2249

    Article  PubMed  CAS  Google Scholar 

  • Ko SK, Cho OS, Bae HM, Sohn UD, Im BO, Cho SH, Chung SH, Lee BY (2009) Change of ginsenoside composition of various American ginseng roots. J Korean Soc Appl Biol Chem 52:198–201

    Article  CAS  Google Scholar 

  • Kostova I, Dinchev D (2005) Saponins in Tribulus terrestris – chemistry and bioactivity. Phytochem Rev 4:111–137

    Article  CAS  Google Scholar 

  • Kuljanabhagavad T, Wink M (2009) Biological activities and chemistry of saponins from Chenopodium quinoa Willd. Phytochem Rev 8:473–490

    Article  CAS  Google Scholar 

  • Kuznesof PM, Valente Soares LM (2005) Quillaja extracts type I and type 2. Evaluation of Certain Food Additives. (65th report of the joint FAO/WHO Expert Committee on Food Additives) WHO Technical Report Series; 934

  • Lacaille-Dubois MA, Mitaine-Offer AC (2005) Triterpene saponins from Polygalaceae. Phytochem Rev 4:139–149

    Article  CAS  Google Scholar 

  • Lacaille-Dubois MA, Wagner H (1996) A review of the biological and pharmacological activities of saponins. Phytomedicine 2:363–386

    Article  CAS  PubMed  Google Scholar 

  • Li J, Hu Z (2009) Accumulation and dynamic trends of triterpenoid saponin in vegetative organs of Achyranthus bidentata. J Integr Plant Biol 51:122–129

    Article  PubMed  CAS  Google Scholar 

  • Lim W, Mudge KW, Vermeylen F (2005) Effects of population, age and cultivation methods on ginsenoside content of wild American ginseng (Panax quinquefolium). J Agric Food Chem 53:8498–8505

    Article  PubMed  CAS  Google Scholar 

  • Lin JT, Chen SL, Liu SC, Yang DJ (2009) Effect of harvest time on saponins in Yam (Dioscorea pseudojaponica Yamamoto). J Food Drug Anal 17:116–122

    CAS  Google Scholar 

  • Ma X, Xie L, Liu L, Tang Q, Wan Z, Li Y (2009) Simultaneous quantification of seven main triterpenoid saponins in Radix et Rhizoma Clematidis by LC–ELSD. Chromatographia 69:437–443

    Article  CAS  Google Scholar 

  • MacDonald RS, Guo JY, Copeland J, Browning JB Jr, Sleper D, Rottinghaus GE, Berhow MA (2005) Environmental influences on isoflavones and saponins in soybeans and their role in colon cancer. J Nutr 135:1239–1242

    PubMed  CAS  Google Scholar 

  • Martínez EA, Veas E, Jorquera C, San Martín R, Jara P (2009) Re-introduction of quinoa into arid Chile: cultivation of two lowland races under extremely low irrigation. J Agric Crop Sci 195:1–10

    Article  Google Scholar 

  • Ndamba J, Robertson I, Lemmich E, Chandiwana SK, Furu P, Mølgaard P (1996) Berry productivity and molluscicidal saponin yield of Phytolacca dodecandra (Phytolaccaceae) under different sunlight, watering and nutrient conditions. Econ Bot 50:151–166

    Article  CAS  Google Scholar 

  • Oleszek W, Stochmal A (2002) Triterpene saponins and flavonoids in the seeds of Trifolium species. Phytochemistry 61:165–170

    Article  PubMed  CAS  Google Scholar 

  • Osbourn A (1996) Saponins and plant defence – a soap story. Trends Plant Sci 1:4–9

    Article  Google Scholar 

  • Osbourn AE (2003) Saponins in cereals. Phytochemistry 62:1–4

    Article  PubMed  CAS  Google Scholar 

  • Park JD, Rhee DK, Lee YH (2005) Biological activities and chemistry of saponins from Panax ginseng C. A. Meyer. Phytochem Rev 4:159–175

    Article  CAS  Google Scholar 

  • Pecetti L, Tava A, Romani M, De Benedetto MG, Corsi P (2006) Variety and environmental effects on the dynamics of saponins in lucerne (Medicago sativa L.). Eur J Agron 25:187–192

    Article  CAS  Google Scholar 

  • Peng HS, Liu WZ, Hu ZH, Zhang L (2009) Localization and dynamic change of saponin in root tuber of cultivated Pseudostellaria heterophylla. J Mol Cell Biol 42:1–10

    CAS  Google Scholar 

  • Pérez N, Pena S, Vega S, Noa M, Enriguez R (1997) Medicagenic acid content in foliage of ten varietes of alfalfa (Medicago sativa L.) cultivated in Mexico. J Sci Food Agric 75:401–404

    Article  Google Scholar 

  • Piacente S, Pizza C, Oleszek W (2005) Saponins and phenolics of Yucca schidigera Roezl: chemistry and bioactivity. Phytochem Rev 4:177–190

    Article  CAS  Google Scholar 

  • Potter DA, Kimmerer TW (1989) Inhibition of herbivory on young holly leaves: evidence for the defensive role of saponins. Oecologia 78:322–329

    Article  Google Scholar 

  • Qu C, Bai Y, Jin X, Wang Y, Zhang K, You J, Zhang H (2009) Study on ginsenosides in different parts and ages of Panax quinquefolius L. Food Chem 115:340–346

    Article  CAS  Google Scholar 

  • Riguera R (1997) Isolating bioactive compounds from marine organisms. J Mar Biotechnol 5:187–193

    CAS  Google Scholar 

  • Ruiz RG, Price KR, Rose ME, Arthur AE, Petterson DS, Fenwick R (1995) The effect of cultivar and environment on saponin content of Australian sweet lupin seed. J Sci Food Agric 69:347–351

    Article  CAS  Google Scholar 

  • Šalamon I, Habán M, Baranec T, Habánová M, Knoll M (2006) The occurrence of puncture vine (Tribulus terrestris) and its metabolic characteristics in Slovakia. Biol Bratislava 61:25–30

    Article  Google Scholar 

  • San Martin R, Briones R (2000) Quality control of commercial quillaja (Quillaja saponaria Molina) extracts by reverse phase HPLC. J Sci Food Agric 80:2063–2068

    Article  CAS  Google Scholar 

  • Schlag EM, McIntosh MS (2006) Ginsenoside content and variation among and within American ginseng (Panax quinquefolius L.) populations. Phytochemistry 67:1510–1519

    Article  PubMed  CAS  Google Scholar 

  • Schwarzbach A, Schreiner M, Knorr D (2006) Effect of cultivars and deep freeze storage on saponin content of white asparagus spears (Asparagus officinalis L.). Eur Food Res Technol 222:32–35

    Article  CAS  Google Scholar 

  • Sen S, Makkar HPS, Becker K (1998) Alfalfa saponins and their implication in animal nutrition. J Agric Food Chem 46:131–140

    Article  PubMed  CAS  Google Scholar 

  • Shi W, Wang Y, Li J, Zhang H, Ding L (2007) Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chem 102:664–668

    Article  CAS  Google Scholar 

  • Shim SJ, Jun WJ, Kang BH (2003) Evaluation of nutritional and antinutritional components in Korean wild legumes. Plant Foods Hum Nutr 58:1–11

    Article  Google Scholar 

  • Shimoyamada M, Okubo K (1991) Variation in saponin contents in germinating soybean seeds and effect of light irradiation. Agric Biol Chem 55:577–579

    Article  CAS  Google Scholar 

  • Skene CD, Sutton P (2006) Saponin-adjuvanted particulate vaccines for clinical use. Methods 40:53–59

    Article  PubMed  CAS  Google Scholar 

  • Solíz-Guerrero JB, de Rodriguez DJ, Rodríguez-García R, Angulo-Sánchez JL, Méndez-Padilla G (2002) Quinoa saponins: concentration and composition analysis. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 110–114

    Google Scholar 

  • Sparg SG, Light ME, van Staden J (2004) Biological activities and distribution of plant saponins. J Ethpharm 94:219–243

    Article  CAS  Google Scholar 

  • Sun H-X, Xie Y, Ye YP (2009) Advances in saponin-based adjuvants. Vaccine 27:1787–1796

    Article  PubMed  CAS  Google Scholar 

  • Szakiel A, Pączkowski C, Henry M (2009) Seasonal changes of triterpene acids and lignane content in Vaccinium myrtillus L. plant and its habitat. International conference on saponins: New trends in saponins. Nancy (France) Abstracts p 59

  • Tan LL, Cai X, Hu ZH, Ni XL (2008) Localization and dynamic change of saikosaponin in root of Bupleurum chinense. J Integr Plant Biol 50:951–957

    Article  PubMed  Google Scholar 

  • Tanaka O, Tamura Y, Masuda H, Mizutani K (1996) Application of saponins in food and cosmetics: saponins of Mohave yucca and Sapinus mukurossi. Adv Exp Med Biol 405:1–11

    Article  PubMed  CAS  Google Scholar 

  • Tava A, Odoardi M, Oleszek W (1999) Seasonal changes of saponin content in five alfalfa (Medicago sativa) cultivars. Agric Med 129:111–116

    Google Scholar 

  • Tava A, Chiari M, Oleszek W (2000) Separation of alfalfa (Medicago sativa L.) saponins as their borate complexes by capillary electrophoresis. In: Oleszek W, Marston A (eds) Saponins in food, feedstuffs and medicinal plants. Proceedings of the phytochemical society of Europe, Kluwer, vol 45, pp 40–45

  • Teng HM, Fang MF, Cai X, Hu ZH (2009) Localization and dynamic change of saponin in vegetative organs of Polygala tenuifolia. J Integr Plant Biol 51:529–536

    Article  PubMed  CAS  Google Scholar 

  • Tian RT, Xie PS, Liu HP (2009) Evaluation of traditional Chinese herbal medicine: Chaihu (Bupleuri Radix) by both high-performance liguid chromatographic and high-performance thin-layer chromatographic fingerprint and chemometric analysis. J Chromatogr A 1216:2150–2155

    Article  PubMed  CAS  Google Scholar 

  • Vijay N, Kumar A, Bhoite A (2009) Influence of nitrogen, phosphorus and potassium fertilizer on biochemical contents of Asparagus racemosus (Willd.) root tubers. Res J Environ Sci 3:285–291

    Article  CAS  Google Scholar 

  • Vincken JP, Heng L, de Groot A, Gruppen H (2007) Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68:275–297

    Article  PubMed  CAS  Google Scholar 

  • Ward SM (2000) Response to selection for reduced grain saponin content in quinoa (Chenopodium quinoa Willd.). Field Crops Res 68:157–163

    Article  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  PubMed  CAS  Google Scholar 

  • Zhang WJ, Björn LO (2009) The effect of ultraviolet radiation on the accumulation of medicinal compounds in plants. Fitoterapia 80:207–218

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Liang Z, Han R, Dong J (2009a) Growth and saikosaponin production of the medicinal herb Bupleurum chinense DC. under different levels of nitrogen and phosphorus. Ind Crop Prod 29:96–101

    Article  CAS  Google Scholar 

  • Zhu Z, Liang Z, Han R, Wang X (2009b) Impact on fertilization on drought response in the medicinal herb Bupleurum chinense DC.: growth and saikosaponin production. Ind Crop Prod 29:629–633

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Szakiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szakiel, A., Pączkowski, C. & Henry, M. Influence of environmental abiotic factors on the content of saponins in plants. Phytochem Rev 10, 471–491 (2011). https://doi.org/10.1007/s11101-010-9177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-010-9177-x

Keywords

Navigation