Skip to main content
Log in

Glucosinolates in Brassica foods: bioavailability in food and significance for human health

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Glucosinolates are sulphur compounds that are prevalent in Brassica genus. This includes crops cultivated as vegetables, spices and sources of oil. Since 1970s glucosinolates and their breakdown products, have been widely studied by their beneficial and prejudicial biological effects on human and animal nutrition. They have also been found to be partly responsible for the characteristic flavor of Brassica vegetables. In recent years, considerable attention has been paid to cancer prevention by means of natural products. The cancer-protective properties of Brassica intake are mediated through glucosinolates. Isothyocianate and indole products formed from glucosinolates may regulate cancer cell development by regulating target enzymes, controlling apoptosis and blocking the cell cycle. Nevertheless, variation in content of both glucosinolates and their bioactive hydrolysis products depends on both genetics and the environment, including crop management practices, harvest and storage, processing and meal preparation. Here, we review the significance of glucosinolates as source of bioactive isothiocyanates for human nutrition and health and the influence of environmental conditions and processing mechanisms on the content of glucosinolate concentration in Brassica vegetables. Currently, this area is only partially understood. Further research is needed to understand the mechanisms by which the environment and processing affect glucosinolates content of Brassica vegetables. This will allow us to know the genetic control of these variables, what will result in the development of high quality Brassica products with a health-promoting activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anilakumar KR, Khanum F, Bawa AS (2006) Dietary role of glucosinolate derivatives: a review. J Food Sci Technol-Mysore 43:8–17

    CAS  Google Scholar 

  • Baik HY, Juvik J, Jeffery EH, Wallig MA, Kushad M, Klein BP (2003) Relating glucosinolate content and flavour of broccoli cultivars. J Food Sci 68:1043–1050

    Article  CAS  Google Scholar 

  • Bible BB, Chong C (1975) Correlation of temperature and rainfall with thiocyanate ion content in roots or radishes grown on two soil types. Hortscience 10:484–485

    CAS  Google Scholar 

  • Block G, Patterson B, Subar A (1992) Fruit, vegetables, and cancer prevention: A review of the epidemiological evidence. Nutr Cancer 18:1–29

    Article  PubMed  CAS  Google Scholar 

  • Bones AM, Rositer JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67: 1053–1067

    Article  PubMed  CAS  Google Scholar 

  • Booth EJ, Walker KC, Griffiths DW (1991) A time course study of the effect of sulfur on glucosinolates in oilseed rape (Brassica napus) from the vegetative stage to maturity. J Sci Food Agric 56:479–493

    Article  CAS  Google Scholar 

  • Brown AF, Yousef GG, Jeffery EH, Klein BP, Walling MA, Kushad MM, Juvik JA (2002) Glucosinolate profile in broccoli: variation in levels and implications in breeding for cancer chemoprotection. J Am Hort Soc Sci 127:807–813

    CAS  Google Scholar 

  • Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481

    Article  PubMed  CAS  Google Scholar 

  • Carlson DG, Daxenbichler ME, Tookey HL (1987) Glucosinolates in turnip tops and roots: cultivars grown for greens and/or roots. J Am Soc Hort Sci 112:179–183

    CAS  Google Scholar 

  • Cartea ME, Rodríguez VM, Velasco P, de Haro A, Ordás A (2007a) Variation of glucosinolates and nutritional value in nabicol (Brassica napus pabularia group). Euphytica (in press)

  • Cartea ME, Velasco P, Obregón S, del Río M, Padilla G, de Haro A (2007b) Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry (in press)

  • Charron CS, Saxton AM, Sams CE (2005) Relationship of climate and genotype to seasonal variation in the glucosinolate-myrosinase system. I. Glucosinolate content in ten cultivars of Brassica oleracea grown in fall and spring seasons. J Sci Food Agric 85:671–681

    Article  CAS  Google Scholar 

  • Cheng DL, Hashimoto K, Uda Y (2004) In vitro digestion of sinigrin and glucotropaeolin by single strains of Bifidobacterium and identification of the digestive products. Food Chem Toxicol 42:351–357

    Article  PubMed  CAS  Google Scholar 

  • Chong C, Ju H, Bible BB (1982) Glucosinolate composition of turnip and rutabaga cultivars. Can J Plant Sci 62:533–536

    CAS  Google Scholar 

  • Ciska E, Kozlowska (2001) The effect of cooking on the glucosinolate conten in whitte cabbage. Eur Food Res Technol 212:582–587

    Article  CAS  Google Scholar 

  • Ciska E, Pathak DR (2004) Glucosinolate derivatives in stored fermented cabbage. J Agric Food Chem 52:7938–7943

    Article  PubMed  CAS  Google Scholar 

  • Ciska E, Martyniak-Przybyszewska B, Kozlowska H (2000) Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J Agric Food Chem 48:2862–2867

    Article  PubMed  CAS  Google Scholar 

  • Dekker M, Verkerk R (2003) Dealing with variability in food production chains: a tool to enhance the sensitivity of epidemiological studies on phytochemicals. Eur J Nutr 42:67–72

    Article  PubMed  Google Scholar 

  • Drewnowski A, Henderson SA, Barratt-Fornell A (2001) Genetic taste markers and food preferences. Drug Metabol Dispos 29:535–538

    CAS  Google Scholar 

  • Engel E, Baty C, Le Corre D, Souchon I, Martin N (2002) Flavor-active compounds potentially implicated in cooked cauliflower acceptance. J Agric Food Chem 50:6459–6467

    Article  PubMed  CAS  Google Scholar 

  • Engelen-Eigles G, Holden G, Cohen JD, Gardner G (2006) The effect of temperature, photoperiod, and light quality on glucnasturtiin concentration in watercress (Nasturtium officinale). J Agric Food Chem 54:328–334

    Article  PubMed  CAS  Google Scholar 

  • Fahey JW, Zhang Y, Talalay P (1994) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA 94:10367–10372

    Article  Google Scholar 

  • Fahey JW, Stephenson KK, Talalay P (1997) Glucosinolates, myrosinase, and isothiocyanates: three reasons for eating Brassica vegetables. In: Shibamoto T, Terao J, Osawa T (eds) Functional food for disease prevention I. San Francisco, California, USA, pp 16–22

  • Fahey JW, Zalcmann AM, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–61

    Article  PubMed  CAS  Google Scholar 

  • Fahey JW, Haristoy X, Dolan PM, Kensler TW, Scholtus I (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc Natl Acad Sci USA 99:7610–7615

    Article  PubMed  CAS  Google Scholar 

  • Farnham MW, Wilson PE, Stephenson KK Fahey JW (2004) Genetic and environmental effects on glucosinolate content and chemoprotective potency of broccoli. Plant Breed 123:60–65

    Article  CAS  Google Scholar 

  • Fenwick RG, Heaney RK, Mullin WJ (1983a) Glucosinolates and their breakdown products in food plants. CRC Crit Rev Food Sci Nutr 18:123–201

    Article  CAS  Google Scholar 

  • Fenwick GR, Griffiths NM, Heaney RK (1983b) Bitterness in Brussels sprouts (Brassica oleracea L. var. gemmifera): the role of glucosinolates and their breakdown products. J Sci Food Agric 34:73–80

    Article  CAS  Google Scholar 

  • Fieldsend J, Milford GFJ (1994) Changes in glucosinolates during crop development in single-and double low genotypes of winter oilseed rape (Brassica napus): production and distribution in vegetative tissues and developing pods during development and potential role in the recycling of sulphur within the crop. Ann Appl Biol 124:531–542

    Article  CAS  Google Scholar 

  • Giamoustaris A, Mithen R (1996) Genetics of aliphatic glucosinolates. IV. Side-chain modification in Brassica oleracea. Theor Appl Genet 93:1006–1010

    Article  CAS  Google Scholar 

  • Gliszczynska-Swiglo A, Ciska E, Pawlak-Lemanska K, Chmielewski J, Borkowski T, Tyrakowska B (2006) Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Additives and Contaminants 23:1088–1098

    Article  PubMed  CAS  Google Scholar 

  • Goodrich RM, Anderson JL, Stoewsand GS (1989) Glucosinolate changes in blanched broccoli and Brussels sprouts. J Food Proc Preserv 13:275–280

    Article  CAS  Google Scholar 

  • Griffiths DW, Birch ANE, Hillman JR (1998) Antinutritional compounds in the Brassicaceae. Analysis, biosynthesis, chemistry and dietary effects. J Hort Sci Biotech 73:1–18

    CAS  Google Scholar 

  • Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100

    Article  PubMed  CAS  Google Scholar 

  • Halkier BA, Du L (1997) The biosynthesis of glucosinolates. Trends Plant Sci 2:425–431

    Article  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Ann Rev Plant Biol 57:303–333

    Article  CAS  Google Scholar 

  • Hansen M, Laustsen AM, Olsen CE, Poll L, Sorensen H (1997) Chemical and sensory quality of broccoli (Brassica oleracea L. var. italica) J Food Qual 20:441–459

    Article  CAS  Google Scholar 

  • Hecht SS (2000) Inhibition of carcinogenesis by isothiocyanates. Drug Metab Rev 32:395–411

    Article  PubMed  CAS  Google Scholar 

  • Jeffery EH, Brown AF, Kurilich AC, Keck AS, Matusheski N, Klein BP, Juvik JA (2003) Variation in content of bioactive components in broccoli. J Food Compos Anal 16:323–330

    Article  CAS  Google Scholar 

  • Jones G, Sanders OG (2002) A sensory profile of turnip greens as affected by variety and maturity. J Food Sci 67:3126–3129

    Article  CAS  Google Scholar 

  • Jones RB, Faragher JD, Winkler S (2006) A review of the influence of postharvest treatments on quality and glucosinolate content in broccoli (Brassica oleracea var. italica) heads. Postharvest Biol Technol 41:1–8

    Article  CAS  Google Scholar 

  • Ju HY, Chong C, Bible BB, Mullin WJ (1980) Seasonal variation in glucosinolate composition of rutabaga and turnip. Can J Plant Sci 60:1295–1302

    Article  CAS  Google Scholar 

  • Keum YS, Jeong WS, Kong ANT (2004) Chemoprevention by isothiocyanates and their underlying molecular signalling mechanisms. Mutat Res 555:191–202

    PubMed  CAS  Google Scholar 

  • Kim SJ, Matsuo T, Watanabe M, Watanabe Y (2002) Effect of nitrogen and sulphur application on the glucosinolate content in vegetable turnip rape. Soil Sci Plant Nutr 48:43–49

    CAS  Google Scholar 

  • Kim SJ, Kawaguchi S, Watanabe Y (2003) Glucosinolates in vegetative tissues and seeds of twelve cultivars of vegetable turnip rape (Brassica rapa L.) Soil Sci Plant Nutr 49:337–346

    CAS  Google Scholar 

  • Kuang YF, Chen YH (2004) Induction of apoptosis in a non-small cell human lung cancer cell line by isothiocyanates is associated with P53 and P21. Food Chem Toxicol 42:1711–1718

    Article  PubMed  CAS  Google Scholar 

  • Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein B, Wallig MA, Jeffery EH (1999) Variation of glucosinolates in vegetable subspecies of Brassica oleracea. J Food Agric Chem 47:1541–1548

    Article  CAS  Google Scholar 

  • Li G, Quiros CF (2003) In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase Brassica homolog BoGSL-ALK. Theor Appl Genet 106:1116–1121

    PubMed  CAS  Google Scholar 

  • Lund E (2003) Non-nutritive bioactive constituents of plants: dietary sources and health benefits of glucosinolates. Int J Vitam Nutr Res 73:135–143

    Article  PubMed  CAS  Google Scholar 

  • Luthy J, Carden B, Friederich U, Bachmann M (1984) Goitrin – a nitrosatable constituent of plant foodstuffs. Experientia 40:452–453

    Article  PubMed  CAS  Google Scholar 

  • Matusheski NV, Juvik JA, Jeffery EH (2004) Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry 65:1273–1281

    Article  PubMed  CAS  Google Scholar 

  • Mithen R (2001) Glucosinolates and their degradation products. Adv Bot Res 35:213–262

    Article  CAS  Google Scholar 

  • Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT (2000) The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agric 80:967–984

    Article  CAS  Google Scholar 

  • Mithen R, Faulkner K, Magrath R, Rose P, Williamson G, Marquez J (2003) Development of isothiocyanate-enriched broccoli and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells. Theor Appl Gen 106:727–734

    CAS  Google Scholar 

  • Nilsson J, Olsson K, Engqvist G, Ekvall J, Olsson M, Nyman M, Kesson B (2006) Variation in the content of glucosinolates, hydroxycinnamic acids, carotenoids, total antioxidant capacity and low-molecular-weight carbohydrates in Brassica vegetables. J Sci Food Agric 86:528–538

    Article  CAS  Google Scholar 

  • Oerlemans K, Barrett DM, Suades CB, Verkerk R, Dekker M (2006) Thermal degradation of glucosinolates in red cabbage. Food Chem 95:19–29

    Article  CAS  Google Scholar 

  • Padilla G, Cartea ME, Velasco P, de Haro A, Ordás A (2007) Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry 68:536–545

    Article  PubMed  CAS  Google Scholar 

  • Pereira FMV, Rosa E, Fahey JW, Stephenson KK, Carvalho R, Aires A (2002) Influence of temperature and ontogeny on the levels of glucosinolates in broccoli (Brassica oleracea var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes. J Agric Food Chem 50:6239–6244

    Article  PubMed  CAS  Google Scholar 

  • Rangkadilok N, Tomkins B, Nicolas ME, Premier RR, Bennett RN, Eagling DR, Taylor PW (2002) The effect of post-harvest and packaging treatments on glucoraphanin concentration in broccoli (Brassica oleracea var. italica). J Agric Food Chem 50:7386–7391

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues AS, Rosa EAS (1999) Effect of postharvest treatments on the level of glucosinolates in broccoli. J Sci Food Agric 79:1028–1032

    Article  CAS  Google Scholar 

  • Rosa EAS (1997) Glucosinolates from flower buds of Portuguese Brassica crops. Phytochemistry 44:1415–1419

    Article  CAS  Google Scholar 

  • Rosa EAS (1999) Chemical composition. In: Gómez-Campo C (ed) Biology of Brassica Coenospecies. Elsevier Science BV, Amsterdam, pp 315–357

    Chapter  Google Scholar 

  • Rosa EAS, Heaney RK (1993) The effect of cooking and processing on the glucosinolate content: studies on four varieties of Portuguese cabbage and hybrid white cabbage. J Sci Food Agric 62:259–265

    Article  CAS  Google Scholar 

  • Rosa EAS, Heaney RK (1996) Seasonal variation in protein, mineral and glucosinolate composition of Portuguese cabbage and kale. Anim Feed Sci Technol 57:111–127

    Article  CAS  Google Scholar 

  • Rosa EAS, Heaney RK, Fenwick GR, Portas CAM (1997) Glucosinolates in crop plants. Horticultural Rev 19:99–215

    CAS  Google Scholar 

  • Rose P, Huang Q, Ong CN, Whiteman M (2005) Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol 209:105–113

    Article  PubMed  CAS  Google Scholar 

  • Rosen CA, Woodson GE, Thompson JW, Hengesteg AP, Bradlow HL (1998) Preliminary results of the use of indole-3-carbinol for recurrent respiratory papillomatosis. Otolaryngology-Head and Neck Surgery 118:810–815

    Article  PubMed  CAS  Google Scholar 

  • Rosen CJ, Fritz VA, Gardner GM, Hecht SS, Carmella SG, Kenney PM (2005) Cabbage yield and glucosinolate concentrations as affected by nitrogen and sulfur fertility. Hortscience 40:1493–1498

    CAS  Google Scholar 

  • Rouzaud G, Young SA, Duncan A (2004) Hydrolysis of glucosinolates to isothiocyanates after ingestion of raw or microwaved cabbage by human volunteers. Cancer Epidemiol Biomarkers Prevention 13:125–131

    Article  CAS  Google Scholar 

  • Schonhof I, Krumbein A, Brückner B (2004) Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Nahrung/Food 48:25–33

    Article  CAS  Google Scholar 

  • Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P (2001) Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiol Biomarkers Prevention 10:501–508

    CAS  Google Scholar 

  • Slominski BA, Campbell LD (1989) Formation of indole glucosinolates breakdown products in autolyzed, steamed, and cooked brassica vegetables. J Agric Food Chem 37:1297–1302

    Article  CAS  Google Scholar 

  • Smith TK, Lund EK, Clarke RG, Bennet RN, Johnson IT (2005) Effects of Brussels sprout juice on the cell cycle and adhesion of human colorectal carcinoma cells (HT29) in vitro. J Agric Food Chem 53:3895–3901

    Article  PubMed  CAS  Google Scholar 

  • Sones K, Heaney RK, Fenwick GR (1984) The glucosinolate content of UK vegetables: cabbage (Brasica oleracea), swede (B. napus) and turnip (B. campestris). Food Additive and Contaminants 3:289–296

    Google Scholar 

  • Song L, Thornalley PJ (2007) Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food Chem Toxicol 45:216–224

    Article  PubMed  CAS  Google Scholar 

  • Talalay P, Fahey JW (2001) Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr 131:3027–3033

    Google Scholar 

  • Talalay P, Zhang Y (1996) Chemoprotection against cancer by isothiocyanates and glucosinolates. Biochem Soc Trans 24:806–810

    PubMed  CAS  Google Scholar 

  • Telang NG, Katdare M, Bradlow HK, Osborne MP, Fishman J (1997) Inhibition of proliferation and modulation of estradiol metabolism: novel mechanisms for breast cancer prevention by the phytochemical indole-3-carbinol. Proc Soc Experim Biol Medicine 216:246–252

    CAS  Google Scholar 

  • Vallejo F, Tomás-Barberán FA, García-Viguera C (2002) Glucosinolates and vitamin C content in edible parts of broccoli florets after domestic cooking. Eur Food Res Technol 215:310–316

    Article  CAS  Google Scholar 

  • Vallejo F, Tomás-Barberán FA, García-Viguera C (2003) Health promoting compounds in broccoli as influenced by refrigerated transport and retail sale period. J Agric Food Chem 51:3029–3034

    Article  PubMed  CAS  Google Scholar 

  • van Doorn HE, van der Kruk GC, van Holst GJ, Raaijmakers-Ruijs CME, Postma E, Groeneweg B, Jongen WHF (1998) The glucosinolates sinigrin and progoitrin are important determinants for taste preference and bitterness of Brussels sprouts. J Sci Food Agric 78:30–38

    Article  Google Scholar 

  • VanEtten CH, Daxenbichler ME, Williams PH, Kwolek F (1976) Glucosinolates and derived products in cruciferous vegetables. Analysis of the edible part from twenty-two varieties of cabbage. J Agric Food Chem 24:452–455

    Article  PubMed  CAS  Google Scholar 

  • VanEtten CH, Daxenbichler ME, Tookey HL, Kwolek WF, Williams PH, Yoder OC (1980) Glucosinolates: potential toxicants in cabbage cultivars. J Am Soc Hort Sci 105:710–714

    CAS  Google Scholar 

  • Velasco P, Cartea ME, González C, Vilar M, Ordás A (2007) Factors affecting the glucosinolate content of kale (Brassica oleracea acephala group) J Agric Food Chem 55:955–962

    Article  PubMed  CAS  Google Scholar 

  • Verkerk R, Dekker M (2004) Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. capitata f. rubra DC.) after various microwave treatments. J Agric Food Chem 52:7318–7323

    Article  PubMed  CAS  Google Scholar 

  • Verkerk R, Dekker M, Jongen WMF (2001) Post-harvest increase of indolyl glucosinolates in response to chopping and storage of Brassica vegetables. J Sci Food Agric 81:953–958

    Article  CAS  Google Scholar 

  • Winkler S, Faragher J, Franz P, Imsic M, Jones R (2007) Glucoraphanin and flavonoid levels remain stable during simulated transport and marketing of broccoli (Brassica oleracea var. italica) heads. Postharvest Biol Technol 43:89–94

    Article  CAS  Google Scholar 

  • Zhang Y, Talalay P (1994) Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res 54:1976–1981

    Google Scholar 

  • Zhang Y, Talalay P, Cho CG, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Nat Acad Sci USA 89:2399–2403

    Article  PubMed  CAS  Google Scholar 

  • Zhao FJ, Evans EJ, Bilsborrow E, Syers JK (1994) Influence of nitrogen and sulphur on the glucosinolate profile of rapeseed (Brassica napus L) J Sci Food Agric 64:295–304

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Elena Cartea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cartea, M.E., Velasco, P. Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochem Rev 7, 213–229 (2008). https://doi.org/10.1007/s11101-007-9072-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-007-9072-2

Keywords

Navigation