Photosynthetica 2017, 55(3):421-433 | DOI: 10.1007/s11099-016-0657-0

Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2

S. K. Singh1,2,*, V. R. Reddy1, D. H. Fleisher1, D. J. Timlin1
1 Crop Systems and Global Change Laboratory, USDA-ARS, Beltsville, USA
2 Wye Research and Education Center, University of Maryland, Beltsville, USA

To assess the relationship between chlorophyll (Chl) fluorescence (CF) and photosynthetic pigments, soybean was grown under varying phosphorus (P) nutrition at ambient and elevated CO2 (EC). The EC stimulated, but P deficiency decreased plant height, node numbers, and leaf area concomitantly with the rates of stem elongation, node addition, and leaf area expansion. Under P deficiency, CF parameters and pigments declined except that carotenoids (Car) were relatively stable indicating its role in photoprotection. The CF parameters were strongly related with Chl concentration but not with Chl a/b or Car. However, total Chl/Car showed the strongest association with CF parameters such as quantum efficiency and yield of photosystem II. This relationship was not affected by CO2 treatment. The high correlation between CF and total Chl/Car underscores the significance of the quantification of both, Chl and Car concentrations, to understand the photochemistry and underlying processes of photoprotection and mechanisms of excess energy dissipation in a given environment.

Additional key words: chlorophyll, carotenoids ratio; energy dissipation; photochemical quenching; relationship; response curve

Received: March 18, 2016; Accepted: July 15, 2016; Published: September 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Singh, S.K., Reddy, V.R., Fleisher, D.H., & Timlin, D.J. (2017). Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2. Photosynthetica55(3), 421-433. doi: 10.1007/s11099-016-0657-0
Download citation

References

  1. Baker N.R., Rosenqvist E.: Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities.-J. Exp. Bot. 55: 1607-1621, 2004. Go to original source...
  2. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo.-Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  3. Cassman K.G., Whitney A.S., Fox R.L.: Phosphorus requirements of soybean and cowpea as affected by mode of N nutrition.-Agron. J. 73: 17-22, 1981. Go to original source...
  4. Cordell D., Drangert J.-O., White S.: The story of phosphorus: Global food security and food for thought.-Global Environ. Chang. 19: 292-305, 2009. Go to original source...
  5. Crafts-Brandner S.J.: Phosphorus nutrition influence on leaf senescence in soybean.-Plant Physiol. 98: 1128-1132, 1992. Go to original source...
  6. Cure J.D., Rufty T.W., Israel D.W.: Phosphorus stress effects on growth and seed yield responses of nonnodulated soybean to elevated carbon dioxide.-Agron. J. 80: 897-902, 1988. Go to original source...
  7. Demmig-Adams B.: Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin.-BBA-Bioenergetics 1020: 1-24, 1990. Go to original source...
  8. Edwards G.E., Baker N.R.: Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis?-Photosynth. Res. 37: 89-102, 1993. Go to original source...
  9. Fleisher D.H., Wang Q., Timlin D.J. et al.: Response of potato gas exchange and productivity to phosphorus deficiency and carbon dioxide enrichment.-Crop Sci. 52: 1803-1815, 2012. Go to original source...
  10. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. Biophys. Acta 990: 87-92, 1989. Go to original source...
  11. Genty B., Harbinson J., Baker N.R.: Relative quantum efficiencies of the two photosystems of leaves in photorespiratory and not photorespiratory conditions.-Plant Physiol. Bioch. 28: 1-10, 1990.
  12. Havaux M.: Carotenoids as membrane stabilizers in chloroplasts.-Trends Plant Sci. 3: 147-151, 1998. Go to original source...
  13. Hendry G.A.F., Price A.H.: Stress indicators: chlorophylls and carotenoids.-In: Hendry G.A.F., Grime J.P. (ed.): Methods in Comparative Plant Ecology Pp. 148-152. Chapman & Hall, London 1993. Go to original source...
  14. Hewitt E.J.: Sand and water culture. Methods used in the study of plant nutrition.-In: Technical Communication No. 22. Commonwealth Bureau of Horticulture and Plantation, Commonwealth Agricultural Bureaux Farmham Royal. Pp. 187-190. Maidstone, Kent. Bucks 1952.
  15. IPCC. Summary for policymakers.-In: Stocker T.F., Qin D., Plattner G.-K. et al (ed.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 29. Cambridge University Press, Cambridge and New York 2013.
  16. Israel D.W., Rufty T.W., Cure J.D.: Nitrogen and phosphorus nutritional interactions in a CO2 enriched environment.-J. Plant Nutr. 13: 1419-1433, 1990. Go to original source...
  17. Ivanov A., Sane P., Hurry V. et al.: Photosystem II reaction centre quenching: Mechanisms and physiological role.-Photosynth. Res. 98: 565-574, 2008a. Go to original source...
  18. Ivanov A., Hurry V., Sane P. et al.: Reaction centre quenching of excess light energy and photoprotection of photosystem II.-J Plant Biol. 51: 85-96, 2008b. Go to original source...
  19. Lambers H., Chapin F.S., Pons T.L.: Plant Physiological Ecology. Chapter 2: Photosynthesis, Respiration, and Long-Distance Transport. 2nd ed. Pp. 11-162. Springer, New York 2010.
  20. Lauer M.J., Pallardy S.G., Blevins D.G., Randall D.D.: Whole leaf carbon exchange characteristics of phosphate deficient soybeans (Glycine max L.).-Plant Physiol. 91: 848-854, 1989. Go to original source...
  21. Lichtenthaler H.K., Wellburn A.R.: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents.-Biochem. Soc. T. 11: 591-592, 1983. Go to original source...
  22. Lichtenthaler H.K.: Chlorophylls and carotenoids: Pigments of photosynthesis.-Methods Enzymol. 148: 350-382, 1987. Go to original source...
  23. Maxwell K., Johnson G.N.: Chlorophyll fluorescence: A practical guide.-J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  24. Miranda V., Baker N.R., Long S.P.: Limitations of photosynthesis in different regions of the Zea mays leaf.-New Phytol. 89: 179-190, 1981. Go to original source...
  25. Netto A.T., Campostrini E., de Oliveira J.G., Yamanishi O.K.: Portable chlorophyll meter for the quantification of photosynthetic pigments, nitrogen and the possible use for assessment of the photochemical process in Carica papaya L.-Braz. J. Plant Physiol. 14: 203-210, 2002. Go to original source...
  26. Netto A.T., Campostrini E., de Oliveira J.G., Bressan-Smith R.E.: Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves.-Sci. Hortic.-Amsterdam 104: 199-209, 2005. Go to original source...
  27. Olaizola M., Yamamoto H.Y.: Short-term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in Chaetoceros muelleri (Bacillariophyceae).-J. Phycol. 30: 606-612, 1994. Go to original source...
  28. Ort D.R.: When there is too much light.-Plant Physiol. 125: 29-32, 2001. Go to original source...
  29. Pascal A.A., Liu Z., Broess K. et al.: Molecular basis of photoprotection and control of photosynthetic light-harvesting.-Nature 436: 134-137, 2005. Go to original source...
  30. Reddy K.R., Zhao D.L.: Interactive effects of elevated CO2 and potassium deficiency on photosynthesis, growth, and biomass partitioning of cotton.-Field Crop. Res. 94: 201-213, 2005. Go to original source...
  31. Rohácek K.: Chlorophyll fluorescence parameters: The definitions, photosynthetic meaning, and mutual relationships.-Photosynthetica 40: 13-29, 2002. Go to original source...
  32. Rufty T.W., Siddiqi M.Y., Glass A.D.M., Ruth T.J.: Altered 13NO3-influx in phosphorus limited plants.-Plant Sci. 76: 43-48, 1991. Go to original source...
  33. Samson G., Prá¹il O., Yaakoubd B.: Photochemical and thermal phases of chlorophyll a fluorescence.-Photosynthetica 37: 163-182, 1999. Go to original source...
  34. Seaton G.G.R., Walker D.A.: Chlorophyll fluorescence as a measure of photosynthetic carbon assimilation.-P. R. Soc. B 242: 29-35, 1990. Go to original source...
  35. Singh S.K., Badgujar G., Reddy V.R. et al.: Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton.-J. Plant Physiol. 170: 801-813, 2013a. Go to original source...
  36. Singh S.K., Badgujar G.B., Reddy V.R. et al.: Effect of phosphorus nutrition on growth and physiology of cotton under ambient and elevated carbon dioxide.-J. Agron. Crop Sci. 199: 436-448, 2013b. Go to original source...
  37. Singh S.K., Hoyos-Villegas V., Ray J.D. et al.: Quantification of leaf pigments in soybean (Glycine max (L.) Merr.) based on wavelet decomposition of hyperspectral features.-Field Crops Res. 149: 20-32, 2013c. Go to original source...
  38. Singh S.K., Reddy V.R., Fleisher H.D., Timlin J.D.: Growth, nutrient dynamics, and efficiency responses to carbon dioxide and phosphorus nutrition in soybean.-J. Plant Int. 9: 838-849, 2014a. Go to original source...
  39. Singh S.K., Reddy K.R., Reddy V.R., Gao W.: Maize growth and developmental responses to temperature and ultraviolet-B radiation interaction.-Photosynthetica 52: 262-271, 2014b. Go to original source...
  40. Singh S.K., Reddy V.R.: Combined effects of phosphorus nutrition and elevated carbon dioxide concentration on chlorophyll fluorescence, photosynthesis and nutrient efficiency of cotton.-J. Plant Nutr. Soil Sci. 177: 892-902, 2014. Go to original source...
  41. Singh S.K., Reddy V.R.: Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical concentration.-J. Photoch. Photobio. B 151: 276-284, 2015. Go to original source...
  42. Singh S.K., Reddy V.R.: Methods of mesophyll conductance estimation: its impact on key biochemical parameters and photosynthetic limitations in phosphorus stressed soybean across CO2.-Physiol. Plantarum 157: 234-254, 2016. Go to original source...
  43. van Kooten O., Snel J.F.: The use of chlorophyll fluorescence nomenclature in plant stress physiology.-Photosynth. Res. 25: 147-150, 1990. Go to original source...
  44. Walker W.M., Raines G.A., Peck T.R.: Effect of soybean cultivar, phosphorus and potassium upon yield and chemical composition.-J. Plant Nutr. 8: 73-87, 1985. Go to original source...
  45. Zai X.M., Zhu S.N., Qin P. et al.: Effect of Glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress.-Photosynthetica 50: 323-328, 2012. Go to original source...
  46. Zhao D., Reddy K.R., Kakani V.G., Reddy V.R.: Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum.-Eur. J. Agron. 22: 391-403, 2005. Go to original source...