Skip to main content

Advertisement

Log in

Biomedical Imaging: Principles, Technologies, Clinical Aspects, Contrast Agents, Limitations and Future Trends in Nanomedicines

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

This review article presents the state-of-the-art in the major imaging modalities supplying relevant information on patient health by real-time monitoring to establish an accurate diagnosis and potential treatment plan. We draw a comprehensive comparison between all imagers and ultimately end with our focus on two main types of scanners: X-ray CT and MRI scanners. Numerous types of imaging probes for both imaging techniques are described, as well as reviewing their strengths and limitations, thereby showing the current need for the development of new diagnostic contrast agents (CAs). The role of nanoparticles in the design of CAs is then extensively detailed, reviewed and discussed. We show how nanoparticulate agents should be promising alternatives to molecular ones and how they are already paving new routes in the field of nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

2D:

2-Dimension

3D:

3-Dimension

API:

Active principle ingredient

CA:

Contrast agent

CNS:

Central nervous system

CT:

Computed tomography

DDS:

Drug delivery system

DEs:

Dendrimers

EPR:

Enhanced permeability and retention

FDA:

Food and drug administration

GI:

Gastrointestinal

HDL:

High-density lipoprotein

HU:

Hounsfield unit

IONPs:

Iron oxide nanoparticles

LDL:

Low-density lipoprotein

LPs:

Liposomes

LPPs:

Lipoproteins

NCs:

Nanocarriers

NMR:

Nuclear magnetic resonance

NPs:

Nanoparticles

MRI:

Magnetic resonance imaging

PAMAM:

Poly(Amidoamine)

PCL:

Poly(ε-Caprolactone)

PEG:

Poly(Ethylene Glycol)

PLA:

Poly(Lactic Acid)

PLGA:

Poly(Lactic-co-Glycolic Acid)

PET:

Positron emission tomography

PO:

Poly(Propylene Oxide)

RES:

Reticuloendothelial system

ROI:

Region of interest

SPECT:

Single-photon emission computed tomography

SPIONs:

Superparamagnetic iron oxide nanoparticles

USPIOs:

Ultrasmall superparamagnetic iron oxide

VLDL:

Very low-density lipoprotein

References

  1. Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM. Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem. 2011;399(1):3–27.

    Article  CAS  PubMed  Google Scholar 

  2. Key J, Leary JF. Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomedicine. 2014;9:711–26.

    PubMed  PubMed Central  Google Scholar 

  3. Li X, Anton N, Zuber G, Vandamme T. Contrast agents for preclinical targeted X-ray imaging. Adv Drug Deliv Rev. 2014;76:116–33.

    Article  CAS  PubMed  Google Scholar 

  4. Elsabahy M, Heo GS, Lim SM, Sun G, Wooley KL. Polymeric nanostructures for imaging and therapy. Chem Rev. 2015;115(19):10967–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fass L. Imaging and cancer: a review. Mol Oncol. 2008;2(2):115–52.

    Article  PubMed  PubMed Central  Google Scholar 

  6. James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92(2):897–965.

    Article  CAS  PubMed  Google Scholar 

  7. Koo V, Hamilton PW, Williamson K. Non-invasive in vivo imaging in small animal research. Cell Oncol. 2006;28(4):127–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. van der Vaart MG, Meerwaldt R, Slart RH, van Dam GM, Tio RA, Zeebregts CJ. Application of PET/SPECT imaging in vascular disease. Eur J Vasc Endovasc Surg. 2008;35(5):507–13.

    Article  PubMed  Google Scholar 

  9. Huang Q, Zeng Z. A review on real-time 3D ultrasound imaging technology. Biomed Res Int. 2017;2017:6027029.

    PubMed  PubMed Central  Google Scholar 

  10. Deshpande N, Needles A, Willmann JK. Molecular ultrasound imaging: current status and future directions. Clin Radiol. 2010;65(7):567–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307(5709):538–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Volkov Y. Quantum dots in nanomedicine: recent trends, advances and unresolved issues. Biochem Biophys Res Commun. 2015;468(3):419–27.

    Article  CAS  PubMed  Google Scholar 

  13. He X, Ma N. An overview of recent advances in quantum dots for biomedical applications. Colloids Surf B Biointerfaces. 2014;124:118–31.

    Article  CAS  PubMed  Google Scholar 

  14. Martelli C, Dico AL, Diceglie C, Lucignani G, Ottobrini L. Optical imaging probes in oncology. Oncotarget. 2016;7(30):48753–87.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bouchaala R, Mercier L, Andreiuk B, Mely Y, Vandamme T, Anton N, et al. Integrity of lipid nanocarriers in bloodstream and tumor quantified by near-infrared ratiometric FRET imaging in living mice. J Control Release. 2016;236:57–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kilin VN, Anton H, Anton N, Steed E, Vermot J, Vandamme TF, et al. Counterion-enhanced cyanine dye loading into lipid nano-droplets for single-particle tracking in zebrafish. Biomaterials. 2014;35(18):4950–7.

    Article  CAS  PubMed  Google Scholar 

  17. Klymchenko AS, Roger E, Anton N, Anton H, Shulov I, Vermot J, et al. Highly lipophilic fluorescent dyes in nano-emulsions: towards bright non-leaking nano-droplets. RSC Adv. 2012;2(31):11876–86.

    Article  CAS  PubMed  Google Scholar 

  18. Wu C, Gleysteen J, Teraphongphom NT, Li Y, Rosenthal E. In-vivo optical imaging in head and neck oncology: basic principles, clinical applications and future directions. Int J Oral Sci. 2018;10(2):10.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang C, Wang Z, Zhao T, Li Y, Huang G, Sumer BD, et al. Optical molecular imaging for tumor detection and image-guided surgery. Biomaterials. 2018;157:62–75.

    Article  CAS  PubMed  Google Scholar 

  20. Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2013;113(3):1641–66.

    Article  CAS  PubMed  Google Scholar 

  21. Noone TC, Semelka RC, Chaney DM, Reinhold C. Abdominal imaging studies: comparison of diagnostic accuracies resulting from ultrasound, computed tomography, and magnetic resonance imaging in the same individual. Magn Reson Imaging. 2004;22(1):19–24.

    Article  PubMed  Google Scholar 

  22. Oliva MR, Saini S. Liver cancer imaging: role of CT, MRI, US and PET. Cancer Imaging. 2004;4:S42–6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Semelka RC, Martin DR, Balci C, Lance T. Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging. 2001;13(3):397–401.

    Article  CAS  PubMed  Google Scholar 

  24. Elstob A, Gonsalves M, Patel U. Diagnostic modalities. Int J Surg. 2016;36:504–12.

    Article  PubMed  Google Scholar 

  25. Elias J, Semelka RC, Altun E, Tsurusaki M, Pamuklar E, Zapparoli M, et al. Pancreatic cancer: correlation of MR findings, clinical features, and tumor grade. J Magn Reson Imaging. 2007;26(6):1556–63.

    Article  PubMed  Google Scholar 

  26. Casciato M, editor. Cuatro Europeos en Chandigarh. LC+Pierre Jeanneret, Jane Drew & Maxwell Fry. RA Rev Arquit. 2010;12:17–24.

  27. Rontgen WC. On a new kind of rays. Science. 1896;3(59):227–31.

    Article  CAS  PubMed  Google Scholar 

  28. Leung S. Treatment of pediatric genitourinary malignancy with interstitial brachytherapy: Peter MacCallum Cancer Institute experience with four cases. Int J Radiat Oncol Biol Phys. 1995;31(2):393–8.

    Article  CAS  PubMed  Google Scholar 

  29. Yu SB, Watson AD. Metal-based X-ray contrast media. Chem Rev. 1999;99(9):2353–78.

    Article  CAS  PubMed  Google Scholar 

  30. Hallouard F, Anton N, Choquet P, Constantinesco A, Vandamme T. Iodinated blood pool contrast media for preclinical X-ray imaging applications–a review. Biomaterials. 2010;31(24):6249–68.

    Article  CAS  PubMed  Google Scholar 

  31. Jakhmola A, Anton N, Vandamme TF. Inorganic nanoparticles based contrast agents for X-ray computed tomography. Adv Healthc Mater. 2012;1(4):413–31.

    Article  CAS  PubMed  Google Scholar 

  32. Cormode DP, Naha PC, Fayad ZA. Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging. 2014;9(1):37–52.

    Article  CAS  PubMed  Google Scholar 

  33. Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. Adv Mater. 2013;25(19):2641–60.

    Article  CAS  PubMed  Google Scholar 

  34. De La Vega JC, Hafeli UO. Utilization of nanoparticles as X-ray contrast agents for diagnostic imaging applications. Contrast Media Mol Imaging. 2015;10(2):81–95.

    Article  CAS  Google Scholar 

  35. Badea CT, Drangova M, Holdsworth DW, Johnson GA. In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys Med Biol. 2008;53(19):R319–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Holdsworth DW, Thornton MM. Micro-CT in small animal and specimen imaging. Trends Biotechnol. 2002;20(8):S34–9.

    Article  Google Scholar 

  37. Schambach SJ, Bag S, Schilling L, Groden C, Brockmann MA. Application of micro-CT in small animal imaging. Methods. 2010;50(1):2–13.

    Article  CAS  PubMed  Google Scholar 

  38. Ritman EL. Small-animal CT - its difference from, and impact on, clinical CT. Nucl Instrum Methods Phys Res A. 2007;580(2):968–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.

    Article  CAS  PubMed  Google Scholar 

  40. Jones JG, Mills CN, Mogensen MA, Lee CI. Radiation dose from medical imaging: a primer for emergency physicians. West J Emerg Med. 2012;13(2):202–10.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Idee JM, Guiu B. Use of lipiodol as a drug-delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: a review. Crit Rev Oncol Hematol. 2013;88(3):530–49.

    Article  PubMed  Google Scholar 

  42. Widmark JM. Imaging-related medications: a class overview. Proc (Bayl Univ Med Cent). 2007;20(4):408–17.

    Article  Google Scholar 

  43. Suzuki H, Oshima H, Shiraki N, Ikeya C, Shibamoto Y. Comparison of two contrast materials with different iodine concentrations in enhancing the density of the the aorta, portal vein and liver at multi-detector row CT: a randomized study. Eur Radiol. 2004;14(11):2099–104.

    Article  PubMed  Google Scholar 

  44. Zagorchev L, Oses P, Zhuang ZW, Moodie K, Mulligan-Kehoe MJ, Simons M, et al. Micro computed tomography for vascular exploration. J Angiogenes Res. 2010;2:7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kandanapitiye MS, Gao M, Molter J, Flask CA, Huang SD. Synthesis, characterization, and X-ray attenuation properties of ultrasmall BiOI nanoparticles: toward renal clearable particulate CT contrast agents. Inorg Chem. 2014;53(19):10189–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Briguori C, Tavano D, Colombo A. Contrast agent—associated nephrotoxicity. Prog Cardiovasc Dis. 2003;45(6):493–503.

    Article  PubMed  Google Scholar 

  47. Bottinor W, Polkampally P, Jovin I. Adverse reactions to iodinated contrast media. Int J Angiol. 2013;22(3):149–54.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Suckow CE, Stout DB. MicroCT liver contrast agent enhancement over time, dose, and mouse strain. Mol Imaging Biol. 2008;10(2):114–20.

    Article  PubMed  Google Scholar 

  49. Anton N, Vandamme TF. Nanotechnology for computed tomography: a real potential recently disclosed. Pharm Res. 2014;31(1):20–34.

    Article  CAS  PubMed  Google Scholar 

  50. Cormode DP, Skajaa T, Fayad ZA, Mulder WJ. Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol. 2009;29(7):992–1000.

    Article  CAS  PubMed  Google Scholar 

  51. McClatchy DM, Zuurbier RA, Wells WA, Paulsen KD, Pogue BW. Micro-computed tomography enables rapid surgical margin assessment during breast conserving surgery (BCS): correlation of whole BCS micro-CT readings to final histopathology. Breast Cancer Res Treat. 2018;172(3):587–95.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Qiu SQ, Dorrius MD, de Jongh SJ, Jansen L, de Vries J, Schroder CP, et al. Micro-computed tomography (micro-CT) for intraoperative surgical margin assessment of breast cancer: a feasibility study in breast conserving surgery. Eur J Surg Oncol. 2018;44(11):1708–13.

    Article  PubMed  Google Scholar 

  53. Oikonomou EK, Marwan M, Desai MY, Mancio J, Alashi A, Centeno EH, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet. 2018;392(10151):929–39.

    Article  PubMed  PubMed Central  Google Scholar 

  54. O'Sullivan JDB, Behnsen J, Starborg T, MacDonald AS, Phythian-Adams AT, Else KJ, et al. X-ray micro-computed tomography (muCT): an emerging opportunity in parasite imaging. Parasitology. 2018;145(7):848–54.

    Article  PubMed  Google Scholar 

  55. Tang R, Saksena M, Coopey SB, Fernandez L, Buckley JM, Lei L, et al. Intraoperative micro-computed tomography (micro-CT): a novel method for determination of primary tumour dimensions in breast cancer specimens. Br J Radiol. 2016;89(1058):20150581.

    Article  PubMed  Google Scholar 

  56. Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60(11):1252–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem. 2004;14(14):2161–75.

    Article  CAS  Google Scholar 

  58. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064–110.

    Article  CAS  PubMed  Google Scholar 

  59. Louis R. Hawaiian place names: mnemonic symbols in a hawaiian performance cartography. In: Paper read at Indigenous Knowledges Conference. Wellington, NZ: Rutherford House, Pipitea Campus, Victoria University; 2005. p. 167–81.

    Google Scholar 

  60. Tognarelli JM, Dawood M, Shariff MI, Grover VP, Crossey MM, Cox IJ, et al. Magnetic resonance spectroscopy: principles and techniques: lessons for clinicians. J Clin Exp Hepatol. 2015;5(4):320–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Damadian R. Tumor detection by nuclear magnetic resonance. Science. 1971;171(3976):1151–3.

    Article  CAS  PubMed  Google Scholar 

  62. Lauterbur PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature. 1973;242(5394):190–1.

    Article  CAS  Google Scholar 

  63. Garroway AN, Grannell PK, Mansfield P. Image formation in NMR by a selective irradiative process. J Phys C Solid State Phys. 1974;7(24):L457–62.

    Article  CAS  Google Scholar 

  64. Mansfield P, Maudsley A. Medical imaging by NMR. J Magn Reson. 1980;27:101–19.

    Google Scholar 

  65. Edelstein WA, Hutchison JM, Johnson G, Redpath T. Spin warp NMR imaging and applications to human whole-body imaging. Phys Med Biol. 1980;25(4):751–6.

    Article  CAS  PubMed  Google Scholar 

  66. Hutchinson JMS, Edelstein WA, Johnson G. A whole-body NMR imaging machine. J Physics E: Sci Instrum. 1980;13(9):947–55.

    Article  Google Scholar 

  67. Pykett IL, Rzedzian RR. Instant images of the body by magnetic resonance. Magn Reson Med. 1987;5(6):563–71.

    Article  CAS  PubMed  Google Scholar 

  68. Na HB, Song IC, Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv Mater. 2009;21(21):2133–48.

    Article  CAS  Google Scholar 

  69. Nitz WR, Reimer P. Contrast mechanisms in MR imaging. Eur Radiol. 1999;9(6):1032–46.

    Article  CAS  PubMed  Google Scholar 

  70. Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics. 2009;29(5):1433–49.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Strijkers GJ, Mulder WJ, van Tilborg GA, Nicolay K. MRI contrast agents: current status and future perspectives. Anticancer Agents Med Chem. 2007;7(3):291–305.

    Article  CAS  PubMed  Google Scholar 

  72. Geraldes CF, Laurent S. Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging. 2009;4(1):1–23.

    Article  CAS  PubMed  Google Scholar 

  73. Hao D, Ai T, Goerner F, Hu X, Runge VM, Tweedle M. MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging. 2012;36(5):1060–71.

    Article  PubMed  Google Scholar 

  74. Sahraei Z, Mirabzadeh M, Fadaei-Fouladi D, Eslami N, Eshraghi A. Magnetic resonance imaging contrast agents: a review of literature. J Pharm Care. 2014;2:177–82.

    Google Scholar 

  75. Chen W, Cormode DP, Fayad ZA, Mulder WJM. Nanoparticles as magnetic resonance imaging contrast agents for vascular and cardiac diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3(2):146–61.

    Article  CAS  PubMed  Google Scholar 

  76. Singh N, Jenkins GJ, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010;1:5358.

    Article  CAS  Google Scholar 

  77. Y-XJ W. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg. 2011;1(1):35–40.

    Google Scholar 

  78. Wang YX. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J Gastroenterol. 2015;21(47):13400–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11(11):2319–31.

    Article  CAS  PubMed  Google Scholar 

  80. Corot C, Robert P, Idee JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev. 2006;58(14):1471–504.

    Article  CAS  PubMed  Google Scholar 

  81. Lodhia J, Mandarano G, Ferris N, Eu P, Cowell S. Development and use of iron oxide nanoparticles (Part 1): synthesis of iron oxide nanoparticles for MRI. Biomed Imaging Interv J. 2010;6(2):e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wan J, Cai W, Meng X, Liu E. Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chem Commun (Camb). 2007;4(47):5004–6.

    Article  CAS  Google Scholar 

  83. Lee N, Cho HR, Oh MH, Lee SH, Kim K, Kim BH, et al. Multifunctional Fe3O4/TaO(x) core/shell nanoparticles for simultaneous magnetic resonance imaging and X-ray computed tomography. J Am Chem Soc. 2012;134(25):10309–12.

    Article  CAS  PubMed  Google Scholar 

  84. Jarzyna PA, Gianella A, Skajaa T, Knudsen G, Deddens LH, Cormode DP, et al. Multifunctional imaging nanoprobes. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(2):138–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bardhan R, Chen W, Bartels M, Perez-Torres C, Botero MF, McAninch RW, et al. Tracking of multimodal therapeutic nanocomplexes targeting breast cancer in vivo. Nano Lett. 2010;10(12):4920–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yang J, Lim EK, Lee HJ, Park J, Lee SC, Lee K, et al. Fluorescent magnetic nanohybrids as multimodal imaging agents for human epithelial cancer detection. Biomaterials. 2008;29(16):2548–55.

    Article  CAS  PubMed  Google Scholar 

  87. Hagit A, Soenke B, Johannes B, Shlomo M. Synthesis and characterization of dual modality (CT/MRI) core-shell microparticles for embolization purposes. Biomacromolecules. 2010;11(6):1600–7.

    Article  CAS  PubMed  Google Scholar 

  88. Xue S, Wang Y, Wang M, Zhang L, Du X, Gu H, et al. Iodinated oil-loaded, fluorescent mesoporous silica-coated iron oxide nanoparticles for magnetic resonance imaging/computed tomography/fluorescence trimodal imaging. Int J Nanomedicine. 2014;9:2527–38.

    PubMed  PubMed Central  Google Scholar 

  89. Ding H, Wu F. Image guided biodistribution and pharmacokinetic studies of theranostics. Theranostics. 2012;2(11):1040–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2013;4(1):81–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ashton JR, Castle KD, Qi Y, Kirsch DG, West JL, Badea CT. Dual-energy CT imaging of tumor liposome delivery after gold nanoparticle-augmented radiation therapy. Theranostics. 2018;8(7):1782–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Barsanti C, Lenzarini F, Kusmic C. Diagnostic and prognostic utility of non-invasive imaging in diabetes management. World J Diabetes. 2015;6(6):792–806.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Senpan A, Caruthers SD, Rhee I, Mauro NA, Pan D, Hu G, et al. Conquering the dark side: colloidal iron oxide nanoparticles. ACS Nano. 2009;3(12):3917–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xu L, Cheng L, Wang C, Peng R, Liu Z. Conjugated polymers for photothermal therapy of cancer. Polym Chem. 2014;5(5):1573–80.

    Article  CAS  Google Scholar 

  95. Kumar S, Daverey A, Khalilzad-Sharghi V, Sahu NK, Kidambi S, Othman SF, et al. Theranostic fluorescent silica encapsulated magnetic nanoassemblies for in vitro MRI imaging and hyperthermia. RSC Adv. 2015;5(66):53180–8.

    Article  CAS  Google Scholar 

  96. Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2012;64:302–15.

    Article  Google Scholar 

  97. Bogart LK, Pourroy G, Murphy CJ, Puntes V, Pellegrino T, Rosenblum D, et al. Nanoparticles for imaging, sensing, and therapeutic intervention. ACS Nano. 2014;8(4):3107–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kircher MF, Willmann JK. Molecular body imaging: MR imaging, CT, and US. part I. principles. Radiology. 2012;263(3):633–43.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Morse MD. Clusters of transition-metal atoms. Chem Rev. 1986;86(6):1049–109.

    Article  CAS  Google Scholar 

  100. Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev. 1989;89(8):1861–73.

    Article  CAS  Google Scholar 

  101. Faraday M. The bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond. 1857;147:145–81.

    Article  Google Scholar 

  102. Goesmann H, Feldmann C. Nanoparticulate functional materials. Angew Chem Int Ed Engl. 2010;49(8):1362–95.

    Article  CAS  PubMed  Google Scholar 

  103. Issa B, Obaidat IM, Albiss BA, Haik Y. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci. 2013;14(11):21266–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Indira T, Lakshmi P. Magnetic nanoparticles - a review. Int J Pharm Sci Nanotech. 2010;3:1035–42.

    CAS  Google Scholar 

  105. Tartaj P, Morales MP, Gonzalez-Carreño T, Veintemillas-Verdaguer S, Bomati-Miguel O, Roca AG, et al. Biomedical applications of magnetic nanoparticles. In: KHJ B, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, et al., editors. Encyclopedia of materials: science and technology. Oxford: Elsevier; 2007. p. 1–7.

    Google Scholar 

  106. Tyndall J. On the blue colour of the sky, the polarization of skylight, and on the polarization of light by cloudy matter generally. Proc R Soc Lond. 1868;17:223–33.

    Google Scholar 

  107. Mie G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann Phys. 1908;330(3):377–445.

    Article  Google Scholar 

  108. Young A. Rayleigh scattering. Appl Opt. 1981;20(4):533–5.

    Article  CAS  PubMed  Google Scholar 

  109. Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res. 2009;42(8):1097–107.

    Article  CAS  PubMed  Google Scholar 

  110. Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J. 2007;9(2):E128–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liang Y, Hilal N, Langston P, Starov V. Interaction forces between colloidal particles in liquid: theory and experiment. Adv Colloid Interface Sci. 2007;134–135:151–66.

    Article  CAS  PubMed  Google Scholar 

  112. Verwey E, Overbeek J, van Nes K. Theory of the stability of lyophobic colloids-the interactions of soil particles having an electrical double layer. Amsterdam: Elsevier; 1948. p. 631–6.

    Google Scholar 

  113. Kolhatkar AG, Jamison AC, Litvinov D, Willson RC, Lee TR. Tuning the magnetic properties of nanoparticles. Int J Mol Sci. 2013;14(8):15977–6009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62(3):284–304.

    Article  CAS  PubMed  Google Scholar 

  115. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009;61(6):428–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54(5):631–51.

    Article  CAS  PubMed  Google Scholar 

  117. Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 2012;8(2):147–66.

    Article  CAS  PubMed  Google Scholar 

  118. Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol Cell. 2011;31(4):295–302.

    Article  CAS  Google Scholar 

  119. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.

    Article  CAS  PubMed  Google Scholar 

  120. Yu M, Huang S, Yu KJ, Clyne AM. Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int J Mol Sci. 2012;13(5):5554–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shaterabadi Z, Nabiyouni G, Soleymani M. High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles. Mater Sci Eng C Mater Biol Appl. 2017;75:947–56.

    Article  CAS  PubMed  Google Scholar 

  122. Kenley RA, Lee MO, Mahoney TR, Sanders LM. Poly(lactide-co-glycolide) decomposition kinetics in vivo and in vitro. Macromolecules. 1987;20(10):2398–403.

    Article  CAS  Google Scholar 

  123. Yang YY, Chung TS, Ng NP. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials. 2001;22(3):231–41.

    Article  CAS  PubMed  Google Scholar 

  124. Redhead HM, Davis SS, Illum L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J Control Release. 2001;70(3):353–63.

    Article  CAS  PubMed  Google Scholar 

  125. Alvarez-Lorenzo C, Rey-Rico A, Sosnik A, Taboada P, Concheiro A. Poloxamine-based nanomaterials for drug delivery. Front Biosci (Elite Ed). 2010;2:424–40.

    Article  Google Scholar 

  126. Storm G, Belliot SO, Daemen T, Lasic DD. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev. 1995;17(1):31–48.

    Article  CAS  Google Scholar 

  127. Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol. 2014;32(1):32–45.

    Article  CAS  PubMed  Google Scholar 

  128. Torchilin VP, Trubetskoy VS. Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev. 1995;16(2):141–55.

    Article  CAS  Google Scholar 

  129. Torchilin VP. PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv Drug Deliv Rev. 2002;54(2):235–52.

    Article  CAS  PubMed  Google Scholar 

  130. Huang X, Teng X, Chen D, Tang F, He J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials. 2010;31(3):438–48.

    Article  CAS  PubMed  Google Scholar 

  131. Huang X, Li L, Liu T, Hao N, Liu H, Chen D, et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano. 2011;5(7):5390–9.

    Article  CAS  PubMed  Google Scholar 

  132. Tai W, Mahato R, Cheng K. The role of HER2 in cancer therapy and targeted drug delivery. J Control Release. 2010;146(3):264–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Anderson DR, Grillo-Lopez A, Varns C, Chambers KS, Hanna N. Targeted anti-cancer therapy using rituximab, a chimaeric anti-CD20 antibody (IDEC-C2B8) in the treatment of non-Hodgkin's B-cell lymphoma. Biochem Soc Trans. 1997;25(2):705–8.

    Article  CAS  PubMed  Google Scholar 

  134. Lim SH, Beers SA, French RR, Johnson PW, Glennie MJ, Cragg MS. Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica. 2010;95(1):135–43.

    Article  CAS  PubMed  Google Scholar 

  135. Ng EW, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 2006;5(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  136. Baek SE, Lee KH, Park YS, Oh DK, Oh S, Kim KS, et al. RNA aptamer-conjugated liposome as an efficient anticancer drug delivery vehicle targeting cancer cells in vivo. J Control Release. 2014;196:234–42.

    Article  CAS  PubMed  Google Scholar 

  137. Li X, Zhao Q, Qiu L. Smart ligand: aptamer-mediated targeted delivery of chemotherapeutic drugs and siRNA for cancer therapy. J Control Release. 2013;171(2):152–62.

    Article  CAS  PubMed  Google Scholar 

  138. Yang L, Zhang X, Ye M, Jiang J, Yang R, Fu T, et al. Aptamer-conjugated nanomaterials and their applications. Adv Drug Deliv Rev. 2011;63(14–15):1361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Clark AJ, Davis ME. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc Natl Acad Sci U S A. 2015;112(40):12486–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yuan Y, Zhang L, Cao H, Yang Y, Zheng Y, Yang X-J. A polyethylenimine-containing and transferrin-conjugated lipid nanoparticle system for antisense oligonucleotide delivery to AML. Biomed Res Int. 2016;2016:8.

    Google Scholar 

  141. Wiley DT, Webster P, Gale A, Davis ME. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc Natl Acad Sci U S A. 2013;110(21):8662–7.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Liu K, Dai L, Li C, Liu J, Wang L, Lei J. Self-assembled targeted nanoparticles based on transferrin-modified eight-arm-polyethylene glycol-dihydroartemisinin conjugate. Sci Rep. 2016;6:29461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Boohaker RJ, Lee MW, Vishnubhotla P, Perez JM, Khaled AR. The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem. 2012;19(22):3794–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Dijkgraaf I, Kruijtzer JAW, Frielink C, Corstens FHM, Oyen WJG, Liskamp RMJ, et al. αvβ3 integrin-targeting of intraperitoneally growing tumors with a radiolabeled RGD peptide. Int J Cancer. 2007;120(3):605–10.

    Article  CAS  PubMed  Google Scholar 

  145. Jain RK. Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng. 1999;1:241–63.

    Article  CAS  PubMed  Google Scholar 

  146. Peng C, Qin J, Zhou B, Chen Q, Shen M, Zhu M, et al. Targeted tumor CT imaging using folic acid-modified PEGylated dendrimer-entrapped gold nanoparticles. Polym Chem. 2013;4(16):4412–24.

    Article  CAS  Google Scholar 

  147. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125(Pt 23):5591–6.

    Article  CAS  PubMed  Google Scholar 

  148. Li H, Fan X, Houghton J. Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem. 2007;101(4):805–15.

    Article  CAS  PubMed  Google Scholar 

  149. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul. 2001;41:189–207.

    Article  CAS  Google Scholar 

  150. Gallo J, García I, Padro D, Arnáiz B, Penadés S. Water-soluble magnetic glyconanoparticles based on metal-doped ferrites coated with gold: synthesis and characterization. J Mater Chem. 2010;20(44):10010–20.

    Article  CAS  Google Scholar 

  151. Mandal M, Kundu S, Ghosh SK, Panigrahi S, Sau TK, Yusuf SM, et al. Magnetite nanoparticles with tunable gold or silver shell. J Colloid Interface Sci. 2005;286(1):187–94.

    Article  CAS  PubMed  Google Scholar 

  152. Sahoo B, Devi KSP, Dutta S, Maiti TK, Pramanik P, Dhara D. Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications. J Colloid Interface Sci. 2014;431:31–41.

    Article  CAS  PubMed  Google Scholar 

  153. Bae H, Ahmad T, Rhee I, Chang Y, Jin SU, Hong S. Carbon-coated iron oxide nanoparticles as contrast agents in magnetic resonance imaging. Nanoscale Res Lett. 2012;7:31–44.

    Article  Google Scholar 

  154. He W, Ai K, Lu L. Nanoparticulate X-ray CT contrast agents. Sci China Chem. 2015;58(5):753–60.

    Article  CAS  Google Scholar 

  155. Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ. Nanomaterials in combating cancer: therapeutic applications and developments. Nanomedicine. 2014;10(1):19–34.

    Article  CAS  PubMed  Google Scholar 

  156. Hu H-P, Chan H, Ujiie H, Bernards N, Fujino K, Irish JC, et al. Nanoparticle-based CT visualization of pulmonary vasculature for minimally-invasive thoracic surgery planning. PLoS One. 2019;14(1):e0209501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ashton JR, Gottlin EB, Patz EF, West JL, Badea CT. A comparative analysis of EGFR-targeting antibodies for gold nanoparticle CT imaging of lung cancer. PLoS One. 2018;13(11):e0206950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ghaghada K, Starosolski Z, Stupin I, Sarkar P, Annapragada A. Interrogation of evolving tumor vasculature using high-resolution CT imaging and a nanoparticle contrast agent. In: Proceedigns of the SPIE 10578, medical imaging 2018: biomedical applications in molecular, structural, and functional imaging, 105781C (2018). Houston: SPIE; 2018.

  159. Theerasilp M, Sungkarat W, Nasongkla N. Synthesis and characterization of SPIO-loaded PEG-b-PS micelles as contrast agent for long-term nanoparticle-based MRI phantom. Bull Mater Sci. 2018;41(2):42.

    Article  CAS  Google Scholar 

  160. Leftin A, Koutcher JA. Quantification of nanoparticle enhancement in polarized breast tumor macrophage deposits by spatial analysis of MRI and histological iron contrast using computer vision. Contrast Media Mol Imaging. 2018;2018:3526438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Curley SM, Castracane J, Bergkvist M, Cady NC. Functionalization and characterization of an MRI-capable, targeted nanoparticle platform for delivery to the brain. MRS Adv. 2018;3(50):3027–32.

    Article  CAS  Google Scholar 

  162. Hedgire S, Krebill C, Wojtkiewicz GR, Oliveira I, Ghoshhajra BB, Hoffmann U, et al. Ultrasmall superparamagnetic iron oxide nanoparticle uptake as noninvasive marker of aortic wall inflammation on MRI: proof of concept study. Br J Radiol. 2018;91(1092):20180461.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Jin SE, Jin HE, Hong SS. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. Biomed Res Int. 2014;2014:814208.

    PubMed  PubMed Central  Google Scholar 

  164. Marie H, Lemaire L, Franconi F, Lajnef S, Frapart Y-M, Nicolas V, et al. Superparamagnetic liposomes for MRI monitoring and external magnetic field-induced selective targeting of malignant brain tumors. Adv Funct Mater. 2015;25(8):1258–69.

    Article  CAS  Google Scholar 

  165. Wang SH, Shi X, Van Antwerp M, Cao Z, Swanson SD, Bi X, et al. Dendrimer-functionalized iron oxide nanoparticles for specific targeting and imaging of cancer cells. Adv Funct Mater. 2007;17(16):3043–50.

    Article  CAS  Google Scholar 

  166. Tartaj P, Morales MDP, Veintemillas-Verdaguer S, Gonzlez-Carreño T, Serna CJ. The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2003;36(13):R182–97.

    Article  CAS  Google Scholar 

  167. Noriega-Luna B, Godínez LA, Rodríguez FJ, Rodríguez A, Larrea GZLD, Sosa-Ferreyra CF, et al. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomater. 2014;2014:19.

    Article  CAS  Google Scholar 

  168. Sangwan Y, Hooda T, Kumar H. Nanoemulsions: a pharmaceutical review. Int J Pharma Prof Res. 2014;5(2):1031–8.

    Google Scholar 

  169. Mishra R, Son IG, Mishra R. A review article: on nanoemulsion. World J Pharm Pharm Sci. 2014;3:258–74.

    Google Scholar 

  170. Anton N, Vandamme TF. Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res. 2011;28(5):978–85.

    Article  CAS  PubMed  Google Scholar 

  171. Vandamme TF, Anton N. Low-energy nanoemulsification to design veterinary controlled drug delivery devices. Int J Nanomedicine. 2010;5:867–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123–7.

    Article  PubMed  Google Scholar 

  173. Li X, Anton N, Zuber G, Zhao M, Messaddeq N, Hallouard F, et al. Iodinated alpha-tocopherol nano-emulsions as non-toxic contrast agents for preclinical X-ray imaging. Biomaterials. 2013;34(2):481–91.

    Article  CAS  PubMed  Google Scholar 

  174. Attia MF, Anton N, Akasov R, Chiper M, Markvicheva E, Vandamme TF. Biodistribution and toxicity of X-ray iodinated contrast agent in nano-emulsions in function of their size. Pharm Res. 2016;33(3):603–14.

    Article  CAS  PubMed  Google Scholar 

  175. Attia MF, Anton N, Chiper M, Akasov R, Anton H, Messaddeq N, et al. Biodistribution of X-ray iodinated contrast agent in nano-emulsions is controlled by the chemical nature of the oily core. ACS Nano. 2014;8(10):10537–50.

    Article  CAS  PubMed  Google Scholar 

  176. Jarzyna PA, Skajaa T, Gianella A, Cormode DP, Samber DD, Dickson SD, et al. Iron oxide core oil-in-water emulsions as a multifunctional nanoparticle platform for tumor targeting and imaging. Biomaterials. 2009;30(36):6947–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385(1–2):113–42.

    Article  CAS  PubMed  Google Scholar 

  178. Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol. 2014;5:77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Trubetskoy VS. Polymeric micelles as carriers of diagnostic agents. Adv Drug Deliv Rev. 1999;37(1–3):81–8.

    Article  CAS  PubMed  Google Scholar 

  180. Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008;126(3):187–204.

    Article  CAS  PubMed  Google Scholar 

  181. Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polymers. 2011;3(3):1215–42.

    Article  CAS  Google Scholar 

  182. Cheng R, Meng F, Deng C, Klok HA, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013;34(14):3647–57.

    Article  CAS  PubMed  Google Scholar 

  183. Kong WH, Lee WJ, Cui ZY, Bae KH, Park TG, Kim JH, et al. Nanoparticulate carrier containing water-insoluble iodinated oil as a multifunctional contrast agent for computed tomography imaging. Biomaterials. 2007;28(36):5555–61.

    Article  CAS  PubMed  Google Scholar 

  184. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1–2):1–20.

    Article  CAS  PubMed  Google Scholar 

  185. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2(5):347–60.

    Article  CAS  PubMed  Google Scholar 

  186. Fuchs AV, Gemmell AC, Thurecht KJ. Utilising polymers to understand diseases: advanced molecular imaging agents. Polym Chem. 2015;6(6):868–80.

    Article  CAS  Google Scholar 

  187. Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology. 2011;9:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2006;2(1):8–21.

    Article  CAS  PubMed  Google Scholar 

  189. Benzina A, Kruft MA, Bar F, van der Veen FH, Bastiaansen CW, Heijnen V, et al. Studies on a new radiopaque polymeric biomaterial. Biomaterials. 1994;15(14):1122–8.

    Article  CAS  PubMed  Google Scholar 

  190. Mawad D, Mouaziz H, Penciu A, Mehier H, Fenet B, Fessi H, et al. Elaboration of radiopaque iodinated nanoparticles for in situ control of local drug delivery. Biomaterials. 2009;30(29):5667–74.

    Article  CAS  PubMed  Google Scholar 

  191. Pimpha N, Chaleawlert-umpon S, Sunintaboon P. Core/shell polymethyl methacrylate/polyethyleneimine particles incorporating large amounts of iron oxide nanoparticles prepared by emulsifier-free emulsion polymerization. Polymer. 2012;53(10):2015–22.

    Article  CAS  Google Scholar 

  192. Galperin A, Margel S. Synthesis and characterization of radiopaque magnetic core-shell nanoparticles for X-ray imaging applications. J Biomed Mater Res B Appl Biomater. 2007;83(2):490–8.

    Article  CAS  PubMed  Google Scholar 

  193. Kim D, Yu MK, Lee TS, Park JJ, Jeong YY, Jon S. Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents. Nanotechnology. 2011;22(15):155101.

    Article  CAS  PubMed  Google Scholar 

  194. Kim D, Kim J, Jeong Y, Jon S. Antibiofouling polymer coated gold @ iron oxide nanoparticle ( GION ) as a dual contrast agent for CT and MRI. Bull Kor Chem Soc. 2009;30(8):1855–7.

    Article  CAS  Google Scholar 

  195. Skajaa T, Cormode DP, Falk E, Mulder WJ, Fisher EA, Fayad ZA. High-density lipoprotein-based contrast agents for multimodal imaging of atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30(2):169–76.

    Article  CAS  PubMed  Google Scholar 

  196. Ng KK, Lovell JF, Zheng G. Lipoprotein-inspired nanoparticles for cancer theranostics. Acc Chem Res. 2011;44(10):1105–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Allijn IE, Leong W, Tang J, Gianella A, Mieszawska AJ, Fay F, et al. Gold nanocrystal labeling allows low-density lipoprotein imaging from the subcellular to macroscopic level. ACS Nano. 2013;7(11):9761–70.

    Article  CAS  PubMed  Google Scholar 

  198. Sabnis S, Sabnis NA, Raut S, Lacko AG. Superparamagnetic reconstituted high-density lipoprotein nanocarriers for magnetically guided drug delivery. Int J Nanomedicine. 2017;12:1453–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Cormode DP, Skajaa T, van Schooneveld MM, Koole R, Jarzyna P, Lobatto ME, et al. Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform. Nano Lett. 2008;8(11):3715–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Anton.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallyn, J., Anton, N., Akram, S. et al. Biomedical Imaging: Principles, Technologies, Clinical Aspects, Contrast Agents, Limitations and Future Trends in Nanomedicines. Pharm Res 36, 78 (2019). https://doi.org/10.1007/s11095-019-2608-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2608-5

Keywords

Navigation