Skip to main content
Log in

Imiquimod Induces Apoptosis in Human Endometrial Cancer Cells In vitro and Prevents Tumor Progression In vivo

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The increasing incidence of endometrial cancer (EC), in younger age at diagnosis, calls for new tissue-sparing treatment options. This work aims to evaluate the potential of imiquimod (IQ) in the treatment of low-grade EC.

Methods

Effects of IQ on the viabilities of Ishikawa and HEC-1A cells were evaluated using MTT assay. The ability of IQ to induce apoptosis was evaluated by testing changes in caspase 3/7 levels and expression of cleaved caspase-3, using luminescence assay and western blot. Apoptosis was confirmed by flow cytometry and the expression of cleaved PARP. Western blot was used to evaluate the effect of IQ on expression levels of Bcl-2, Bcl-xL, and BAX. Finally, the in vivo efficacy of IQ was tested in an EC mouse model.

Results

There was a decrease in EC cell viability following IQ treatment as well as increased caspase 3/7 activities, cleaved caspase-3 expression, and Annexin-V/ 7AAD positive cell population. Western blot results showed the ability of IQ in cleaving PARP, decreasing Bcl-2 and Bcl-xL expressions, but not affecting BAX expression. In vivo study demonstrated IQ’s ability to inhibit EC tumor growth and progression without significant toxicity.

Conclusions

IQ induces apoptosis in low-grade EC cells in vitro, probably through its direct effect on Bcl-2 family protein expression. In, vivo, IQ attenuates EC tumor growth and progression, without an obvious toxicity. Our study provides the first building block for the potential role of IQ in the non-surgical management of low-grades EC and encouraging further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BAX:

Bcl-2-associated X protein gene

Bcl-2:

B-cell lymphoma/leukemia-2 gen

Bcl-xL:

Bcl-2 homologue B-cell lymphoma-extra large

E2:

Estrogen

EC:

Endometrial cancer

EH:

Endometrial hyperplasia

ER:

Estrogen receptors

GnRH:

Gonadotropin-releasing hormone

IQ:

Imiquimod

Mcl-1:

Myeloid cell leukemia 1

MAPK:

Mitogen-activated protein kinas

PARP:

Poly (ADP-ribose) polymerase

P4:

Progesterone

TLR:

Toll-like receptors

REFERENCES

  1. Ho JC, Allen PK, Jhingran A, Westin SN, Lu KH, Eifel PJ, et al. Management of nodal recurrences of endometrial cancer with IMRT. Gynecol Oncol. 2015;139(1):40–6.

    Article  PubMed  Google Scholar 

  2. Altman AD, Ferguson SE, Atenafu EG, Kobel M, McAlpine JN, Panzarella T, et al. Canadian high risk endometrial cancer (CHREC) consortium: analyzing the clinical behavior of high risk endometrial cancers. Gynecol Oncol. 2015;139(2):268–74.

    Article  PubMed  Google Scholar 

  3. Kaaks R, Lukanova A, Kurzer MS. Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review. Cancer Epidemiol, Biomarkers Prev: Publ Am Assoc Cancer Res, Cosponsored Am Soc Prev Oncol. 2002;11(12):1531–43.

    CAS  Google Scholar 

  4. Felix AS, Scott McMeekin D, Mutch D, Walker JL, Creasman WT, Cohn DE, et al. Associations between etiologic factors and mortality after endometrial cancer diagnosis: the NRG Oncology/Gynecologic Oncology Group 210 trial. Gynecol Oncol. 2015;139(1):70–6.

    Article  PubMed  Google Scholar 

  5. Siegel L, Miller K, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  6. Matsuo K, Ramzan AA, Gualtieri MR, Mhawech-Fauceglia P, Machida H, Moeini A, et al. Prediction of concurrent endometrial carcinoma in women with endometrial hyperplasia. Gynecol Oncol. 2015;139(2):261–7.

    Article  PubMed  Google Scholar 

  7. Morice P, Leary A, Creutzberg C, Abu-Rustum N, Darai E. Endometrial cancer. Lancet. 2015.

  8. Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E, Vergote I. Endometrial cancer. Lancet. 2005;366(9484):491–505.

    Article  PubMed  Google Scholar 

  9. Roett MA. Genital cancers in women: uterine cancer. FP Essent. 2015;438:11–7.

    PubMed  Google Scholar 

  10. Reeves GK, Pirie K, Beral V, Green J, Spencer E, Bull D, et al. Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. BMJ. 2007;335(7630):1134.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Murali R, Soslow RA, Weigelt B. Classification of endometrial carcinoma: more than two types. Lancet Oncol. 2014;15(7):e268–78.

    Article  PubMed  Google Scholar 

  12. Mahdi H, Elshaikh MA, DeBenardo R, Munkarah A, Isrow D, Singh S, et al. Impact of adjuvant chemotherapy and pelvic radiation on pattern of recurrence and outcome in stage I non-invasive uterine papillary serous carcinoma. A multi-institution study. Gynecol Oncol. 2015;137(2):239–44.

    Article  PubMed  Google Scholar 

  13. Llaurado M, Ruiz A, Majem B, Ertekin T, Colas E, Pedrola N, et al. Molecular bases of endometrial cancer: new roles for new actors in the diagnosis and the therapy of the disease. Mol Cell Endocrinol. 2012;358(2):244–55.

    Article  CAS  PubMed  Google Scholar 

  14. Pollard JW, Pacey J, Cheng SV, Jordan EG. Estrogens and cell death in murine uterine luminal epithelium. Cell Tissue Res. 1987;249(3):533–40.

    Article  CAS  PubMed  Google Scholar 

  15. Kim JJ, Kurita T, Bulun SE. Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer. Endocr Rev. 2013;34(1):130–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Song J, Rutherford T, Naftolin F, Brown S, Mor G. Hormonal regulation of apoptosis and the Fas and Fas ligand system in human endometrial cells. Mol Hum Reprod. 2002;8(5):447–55.

    Article  CAS  PubMed  Google Scholar 

  17. Alexaki VI, Charalampopoulos I, Kampa M, Nifli AP, Hatzoglou A, Gravanis A, et al. Activation of membrane estrogen receptors induce pro-survival kinases. J Steroid Biochem Mol Biol. 2006;98(2–3):97–110.

    Article  CAS  PubMed  Google Scholar 

  18. Reis FM, Petraglia F, Taylor RN. Endometriosis: hormone regulation and clinical consequences of chemotaxis and apoptosis. Hum Reprod Update. 2013;19(4):406–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Amaral JD, Sola S, Steer CJ, Rodrigues CM. Role of nuclear steroid receptors in apoptosis. Curr Med Chem. 2009;16(29):3886–902.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang R, He Y, Zhang X, Xing B, Sheng Y, Lu H, et al. Estrogen receptor-regulated microRNAs contribute to the BCL2/BAX imbalance in endometrial adenocarcinoma and precancerous lesions. Cancer Lett. 2012;314(2):155–65.

    Article  CAS  PubMed  Google Scholar 

  21. Bozdogan O, Atasoy P, Erekul S, Bozdogan N, Bayram M. Apoptosis-related proteins and steroid hormone receptors in normal, hyperplastic, and neoplastic endometrium. Int J Gynecol Pathol. 2002;21(4):375–82.

    Article  PubMed  Google Scholar 

  22. Rein DT, Schondorf T, Breidenbach M, Janat MM, Weikelt A, Gohring UJ, et al. Lack of correlation between P53 expression, BCL-2 expression, apoptosis and ex vivo chemosensitivity in advanced human breast cancer. Anticancer Res. 2000;20(6D):5069–72.

    CAS  PubMed  Google Scholar 

  23. Zhou R, Yang Y, Lu Q, Wang J, Miao Y, Wang S, et al. Prognostic factors of oncological and reproductive outcomes in fertility-sparing treatment of complex atypical hyperplasia and low-grade endometrial cancer using oral progestin in Chinese patients. Gynecol Oncol. 2015.

  24. Dorais J, Dodson M, Calvert J, Mize B, Travarelli JM, Jasperson K, et al. Fertility-sparing management of endometrial adenocarcinoma. Obstet Gynecol Surv. 2011;66(7):443–51.

    Article  PubMed  Google Scholar 

  25. Kim JJ, Chapman-Davis E. Role of progesterone in endometrial cancer. Semin Reprod Med. 2010;28(1):81–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shao R. Progesterone receptor isoforms A and B: new insights into the mechanism of progesterone resistance for the treatment of endometrial carcinoma. E Cancer Med Sci. 2013;7:381.

    Google Scholar 

  27. Erkanli S, Ayhan A. Fertility-sparing therapy in young women with endometrial cancer: 2010 update. Int J Gynecol Cancer. 2010;20(7):1170–87.

    Article  PubMed  Google Scholar 

  28. Schon MP, Schon M. Imiquimod: mode of action. Br J Dermatol. 2007;157 Suppl 2:8–13.

    Article  PubMed  Google Scholar 

  29. Karnes JB, Usatine RP. Management of external genital warts. Am Fam Physician. 2014;90(5):312–8.

    PubMed  Google Scholar 

  30. Smith EB, Schwartz M, Kawamoto H, You X, Hwang D, Liu H, et al. Antitumor effects of imidazoquinolines in urothelial cell carcinoma of the bladder. J Urol. 2007;177(6):2347–51.

    Article  CAS  PubMed  Google Scholar 

  31. Han JH, Lee J, Jeon SJ, Choi ES, Cho SD, Kim BY, et al. In vitro and in vivo growth inhibition of prostate cancer by the small molecule imiquimod. Int J Oncol. 2013;42(6):2087–93.

    CAS  PubMed  Google Scholar 

  32. Kim JM, Lee HJ, Kim SH, Kim HS, Ko HC, Kim BS, et al. Efficacy of 5% imiquimod cream on vulvar intraepithelial neoplasia in Korea: pilot study. Ann Dermatol. 2015;27(1):66–70.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Grimm C, Polterauer S, Natter C, Rahhal J, Hefler L, Tempfer CB, et al. Treatment of cervical intraepithelial neoplasia with topical imiquimod: a randomized controlled trial. Obstet Gynecol. 2012;120(1):152–9.

    Article  CAS  PubMed  Google Scholar 

  34. Diakomanolis E, Haidopoulos D, Stefanidis K. Treatment of high-grade vaginal intraepithelial neoplasia with imiquimod cream. N Engl J Med. 2002;347(5):374.

    Article  PubMed  Google Scholar 

  35. Schon MP, Schon M. Immune modulation and apoptosis induction: two sides of the antitumoral activity of imiquimod. Apoptosis. 2004;9(3):291–8.

    Article  CAS  PubMed  Google Scholar 

  36. Sohn KC, Li ZJ, Choi DK, Zhang T, Lim JW, Chang IK, et al. Imiquimod induces apoptosis of squamous cell carcinoma (SCC) cells via regulation of A20. PLoS One. 2014;9(4), e95337.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schon M, Bong AB, Drewniok C, Herz J, Geilen CC, Reifenberger J, et al. Tumor-selective induction of apoptosis and the small-molecule immune response modifier imiquimod. J Natl Cancer Inst. 2003;95(15):1138–49.

    Article  PubMed  Google Scholar 

  38. Huang SW, Chang CC, Lin CC, Tsai JJ, Chen YJ, Wu CY, et al. Mcl-1 determines the imiquimod-induced apoptosis but not imiquimod-induced autophagy in skin cancer cells. J Dermatol Sci. 2012;65(3):170–8.

    Article  CAS  PubMed  Google Scholar 

  39. Mossalam M, Matissek KJ, Okal A, Constance JE, Lim CS. Direct induction of apoptosis using an optimal mitochondrially targeted p53. Mol Pharm. 2012;9(5):1449–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Archibald M, Pritchard T, Nehoff H, Rosengren RJ, Greish K, Taurin S. A combination of sorafenib and nilotinib reduces the growth of castrate-resistant prostate cancer. Int J Nanomedicine. 2016;11:179–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jayakrishnan K, Anupama R, Koshy A, Raju R. Endometrial carcinoma in a young subfertile woman with polycystic ovarian syndrome. J Hum Reprod Sci. 2010;3(1):38–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kullander S. Treatment of endometrial cancer with GnRH analogs. Recent Results Cancer Res. 1992;124:69–73.

    Article  CAS  PubMed  Google Scholar 

  43. Krasner C. Aromatase inhibitors in gynecologic cancers. J Steroid Biochem Mol Biol. 2007;106(1–5):76–80.

    Article  CAS  PubMed  Google Scholar 

  44. Gressel GM, Parkash V, Pal L. Management options and fertility-preserving therapy for premenopausal endometrial hyperplasia and early-stage endometrial cancer. Int J Gynaecol Obstet. 2015;131(3):234–9.

    Article  PubMed  Google Scholar 

  45. Coleman RL, Sill MW, Bell-McGuinn K, Aghajanian C, Gray HJ, Tewari KS, et al. A phase II evaluation of the potent, highly selective PARP inhibitor veliparib in the treatment of persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer in patients who carry a germline BRCA1 or BRCA2 mutation - An NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol. 2015;137(3):386–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reinbolt RE, Hays JL. The role of PARP inhibitors in the treatment of gynecologic malignancies. Front Oncol. 2013;3:237.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fraser M, Zhao H, Luoto KR, Lundin C, Coackley C, Chan N, et al. PTEN deletion in prostate cancer cells does not associate with loss of RAD51 function: implications for radiotherapy and chemotherapy. Clin Cancer Res. 2012;18(4):1015–27.

    Article  CAS  PubMed  Google Scholar 

  48. Janzen DM, Paik DY, Rosales MA, Yep B, Cheng D, Witte ON, et al. Low levels of circulating estrogen sensitize PTEN-null endometrial tumors to PARP inhibition in vivo. Mol Cancer Ther. 2013;12(12):2917–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rixe O, Fojo T. Is cell death a critical end point for anticancer therapies or is cytostasis sufficient? Clin Cancer Res. 2007;13(24):7280–7.

    Article  CAS  PubMed  Google Scholar 

  50. Meden H, Rath W, Kuhn W. Taxol--a new cytostatic drug for therapy of ovarian and breast cancer. Geburtshilfe Frauenheilkd. 1994;54(4):187–93.

    Article  CAS  PubMed  Google Scholar 

  51. Ulrichs K, Yu MY, Duncker D, Muller-Ruchholtz W. Immunosuppression by cytostatic drugs? Behring Inst Mitt. 1984;74:239–49.

    CAS  PubMed  Google Scholar 

  52. Theisen ER, Gajiwala S, Bearss J, Sorna V, Sharma S, Janat-Amsbury M. Reversible inhibition of lysine specific demethylase 1 is a novel anti-tumor strategy for poorly differentiated endometrial carcinoma. BMC Cancer. 2014;14:752.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schon MP, Wienrich BG, Drewniok C, Bong AB, Eberle J, Geilen CC, et al. Death receptor-independent apoptosis in malignant melanoma induced by the small-molecule immune response modifier imiquimod. J Invest Dermatol. 2004;122(5):1266–76.

    Article  PubMed  Google Scholar 

  54. Otsuki Y, Misaki O, Sugimoto O, Ito Y, Tsujimoto Y, Akao Y. Cyclic bcl-2 gene expression in human uterine endometrium during menstrual cycle. Lancet. 1994;344(8914):28–9.

    Article  CAS  PubMed  Google Scholar 

  55. Bhargava V, Kell DL, van de Rijn M, Warnke RA. Bcl-2 immunoreactivity in breast carcinoma correlates with hormone receptor positivity. Am J Pathol. 1994;145(3):535–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW, Hsieh JT, et al. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res. 1992;52(24):6940–4.

    CAS  PubMed  Google Scholar 

  57. Laban M, Ibrahim E, Agur W, Ahmed A. Bcl-2 may play a role in the progression of endometrial hyperplasia and early carcinogenesis, but not linked to further tumorigenesis. J Microscopy Ultrastructure. 2015;3(1):19–24.

    Article  Google Scholar 

  58. Kandalaft LE, Singh N, Liao JB, Facciabene A, Berek JS, Powell Jr DJ, et al. The emergence of immunomodulation: combinatorial immunochemotherapy opportunities for the next decade. Gynecol Oncol. 2010;116(2):222–33.

    Article  CAS  PubMed  Google Scholar 

  59. Coosemans A, Vanderstraeten A, Tuyaerts S, Verschuere T, Moerman P, Berneman ZN, et al. Wilms’ Tumor Gene 1 (WT1)--loaded dendritic cell immunotherapy in patients with uterine tumors: a phase I/II clinical trial. Anticancer Res. 2013;33(12):5495–500.

    CAS  PubMed  Google Scholar 

  60. Santin AD, Hermonat PL, Ravaggi A, Bellone S, Cowan C, Coke C, et al. Development and therapeutic effect of adoptively transferred T cells primed by tumor lysate-pulsed autologous dendritic cells in a patient with metastatic endometrial cancer. Gynecol Obstet Invest. 2000;49(3):194–203.

    Article  CAS  PubMed  Google Scholar 

  61. Jung IK, Kim SS, Suh DS, Kim KH, Lee CH, Yoon MS. Tumor-infiltration of T-lymphocytes is inversely correlated with clinicopathologic factors in endometrial adenocarcinoma. Obstet Gynecol Sci. 2014;57(4):266–73.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This research was supported in part by a Faculty and Creative Grant and Department of Obstetrics and Gynecology at the University of Utah, National Cancer Institute under award number R01-CA140348-01, and The Huntsman Cancer Institute’s Women’s Disease-Oriented Teams Research Funding. We would like to thank Dr. Victoria Bae-Jump, University of North Carolina at Chapel Hill for providing Ishikawa cells, Chieh-Hsiang Yang, Jesus Arellano, and Cameron Neilson for assisting with animal studies and data collection, and Benjamin J. Bruno, Dr. Andrew Dixon, and Dr. Sebastien Taurin for scientific discussions and help with data analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margit M. Janát-Amsbury.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almomen, A., Jarboe, E.A., Dodson, M.K. et al. Imiquimod Induces Apoptosis in Human Endometrial Cancer Cells In vitro and Prevents Tumor Progression In vivo . Pharm Res 33, 2209–2217 (2016). https://doi.org/10.1007/s11095-016-1957-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1957-6

KEY WORDS

Navigation