Skip to main content
Log in

New strategy to surface functionalization of polymeric nanoparticles: one-pot synthesis of scFv anti-LDL(−)-functionalized nanocapsules

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

In general, the surface functionalization of polymeric nanoparticles is carried out by covalently bounding ligands to the nanoparticle surface. This process can cause a lack or decrease of the ligand specificity to its target receptor, besides the need of purification steps. We proposed a ligand-metal-chitosan-lecithin complex as a new strategy to functionalize the surface of biodegradable nanoparticles.

Methods

One pot synthesis of scFv anti-LDL(−)-functionalized nanocapsules was carried out by self-assembly and interfacial reactions. Particle sizing techniques, lipid peroxidation and molecular recognition by enzyme linked immuno sorbent assays were carried out.

Results

The selected formulation had unimodal size distribution with mean diameter of about 130 nm. The metals in the complex did not enhance the oxidative stress, and the scFv anti-LDL(−)-functionalized nanocapsules recognized LDL(−) and did not react with native LDL indicating the maintenance of the active site of the fragment.

Conclusions

The one pot synthesis, using the ligand-metal-chitosan-lecithin complex to functionalize the surface of the biodegradable nanocapsules, maintained the active site of the antibody fragment making the device interesting for applications in nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DLS:

Dynamic light scattering

ELISA:

Enzyme linked immuno sorbent assay

LD:

Laser diffractometry

LDE:

Laser Doppler electrophoresis

LDL:

Low density lipoprotein

LDL(−):

Electronegative low density lipoprotein

LNC:

Lipid-core nanocapsules

MCMN:

Metal complex multi-wall nanocapsules

MDA:

Malondialdehyde

MN:

Multi-wall nanocapsules

nLDL:

Native low density lipoprotein

NTA:

Nanoparticle tracking analysis

PCL:

Poly(ε-caprolactone)

PDI:

Polydispersity index

Phe:

Phenylalanine

scFv anti-LDL(−):

Anti-electronegative LDL single-chain fragment variable

SPAN:

Polydispersity

TBA:

Thiobarbituric acid

TBARS:

Thiobarbituric acid reactive substances

TEM:

Transmission electron microscopy

REFERENCES

  1. Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol-Semin Ori. 2008;26:57–64.

    Article  CAS  Google Scholar 

  2. Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010;62:90–9.

    Article  PubMed  CAS  Google Scholar 

  3. Segala K, Dutra RL, de Oliveira EN, Rossi LM, Matos JR, Paula MMS, et al. Characterization of poly-{trans-RuCl2(vpy)(4)-styrene-4-vinylpyridine} impregnated with silver nanoparticles in non aqueous medium. J Braz Chem Soc. 2006;17:1679–82.

    Article  CAS  Google Scholar 

  4. Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60:1615–26.

    Article  PubMed  CAS  Google Scholar 

  5. Huang JT, Hou SY, Fang SB, Yu HW, Lee HC, Yang CZ. Development of a biochip using antibody-coated gold nanoparticles to detect specific bioparticles. J Ind Microbiol Biotechnol. 2008;35:1377–85.

    Article  PubMed  CAS  Google Scholar 

  6. Betancourt T, Byrne JD, Sunaryo N, Crowder SW, Kadapakkam M, Patel S, et al. PEGylation strategies for active targeting of PLA/PLGA nanoparticles. J Biomed Mater Res A. 2009;91A:263–76.

    Article  CAS  Google Scholar 

  7. Guan XP, Quan DP, Liao KR, Wang T, Xiang P, Mai KC. Preparation and characterization of cationic chitosan-modified poly(D, L-lactide-co-glycolide) copolymer nanospheres as DNA carriers. J Biomater Appl. 2008;22:353–71.

    Article  PubMed  CAS  Google Scholar 

  8. Bernardi A, Zilberstein A, Jager E, Campos MM, Morrone FB, Calixto JB, et al. Effects of indomethacin-loaded nanocapsules in experimental models of inflammation in rats. Br J Pharmacol. 2009;158:1104–11.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Zalipsky S, Wang L, Ding Z, Luo B. Nanoparticle comprises nucleic acid and composition formed by combining cationic polymer conjugate covalently linked to hydrophilic polymer and unconjugated cationic polymer, where nucleic acid and cationic polymer form non-covalent complex. US Patent No. WO2011011631-A2, 2011.

  10. Zhang L, Swift J, Butts SA, Dmochowski IJ. INOR 631-protein-templated gold nanoparticle synthesis and assembly. Abstr Pap Am Chem Soc. 2008;236:631–INOR.

    Google Scholar 

  11. Cheng XH, Chen G, Rodriguez WR. Micro- and nanotechnology for viral detection. Anal Bioanal Chem. 2009;393:487–501.

    Article  PubMed  CAS  Google Scholar 

  12. Li D, Teoh WY, Gooding JJ, Selomulya C, Amal R. Functionalization strategies for protease immobilization on magnetic nanoparticles. Adv Funct Mater. 2010;20:1767–77.

    Article  CAS  Google Scholar 

  13. Letchford K, Liggins R, Wasan KM, Burt H. In vitro human plasma distribution of nanoparticulate paclitaxel is dependent on the physicochemical properties of poly(ethylene glycol)-block-poly(caprolactone) nanoparticles. Eur J Pharm Biopharm. 2009;71:196–206.

    Article  PubMed  CAS  Google Scholar 

  14. Jager E, Venturini CG, Poletto FS, Colome LM, Pohlmann JPU, Bernardi A, et al. Sustained release from lipid-core nanocapsules by varying the core viscosity and the particle surface area. J Biomed Nanotechnol. 2009;5:130–40.

    Article  PubMed  CAS  Google Scholar 

  15. Jornada DS, Fiel LA, Bueno K, Gerent JF, Petzhold CL, Beck RCR, et al. Lipid-core nanocapsules: mechanism of self-assembly, control of size and loading capacity. Soft Matter. 2012;8:6646–55.

    Article  CAS  Google Scholar 

  16. Reynaud F, Tsapis N, Deyme M, Vasconcelos TG, Gueutin C, Guterres SS, et al. Spray-dried chitosan-metal microparticles for ciprofloxacin adsorption: kinetic and equilibrium studies. Soft Matter. 2011;7:7304–12.

    Article  CAS  Google Scholar 

  17. Rodrigues CA, Reynaud F, Stadler E, Drago V. Preparation, characterization, and chromatography properties of chitin modified with FeCl3. J Liq Chromatogr Relat Technol. 1999;22:761–9.

    Article  CAS  Google Scholar 

  18. Bender EA, Adorne MD, Colome LM, Abdalla DSP, Guterres SS, Pohlmann AR. Hemocompatibility of poly(epsilon-caprolactone) lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. Int J Pharm. 2012;426:271–9.

    Article  PubMed  CAS  Google Scholar 

  19. Fiel LA, Adorne MD, Guterres SS, Netz PA, Pohlmann AR. Variable temperature multiple light scattering analysis to determine the enthalpic term of a reversible agglomeration in submicrometric colloidal formulations: a quick quantitative comparison of the relative physical stability. Colloid Surface A. 2013;431:93–104.

    Article  CAS  Google Scholar 

  20. Pohlmann AR, Fonseca FN, Paese K, Detoni CB, Coradini K, Beck RCR, et al. Poly(epsilon-caprolactone) microcapsules and nanocapsules in drug delivery. Expert Opin Drug Del. 2013;10:623–38.

    Article  CAS  Google Scholar 

  21. Schaffazick SR, Pohlmann AR, de Cordova CAS, Creczynski-Pasa TB, Guterres SS. Protective properties of melatonin-loaded nanoparticles against lipid peroxidation. Int J Pharm. 2005;289:209–13.

    Article  PubMed  CAS  Google Scholar 

  22. Faulin TDS, de Sena KCM, Telles AER, Grosso DM, Faulin EJB, Abdalla DSP. Validation of a novel ELISA for measurement of electronegative low-density lipoprotein. Clin Chem Lab Med. 2008;46:1769–75.

    CAS  Google Scholar 

  23. Kazuma SM, Cavalcante MF, Telles AER, Maranhão AQ, Abdalla DSP. Cloning and expression of an anti-LDL(−) single chain variable fragment, and its inhibitory effect on experimental atherosclerosis. mABs. 2013;5:763–75.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ouedraogo HZ, Traore T, Zeba AN, Dramaix-Wilmet M, Hennart P, Donnen P. Effect of an improved local ingredient-based complementary food fortified or not with iron and selected multiple micronutrients on Hb concentration. Public Health Nutr. 2010;13:1923–30.

    Article  PubMed  Google Scholar 

  25. Le TT, Saveyn P, Hoa HD, Van der Meeren P. Determination of heat-induced effects on the particle size distribution of casein micelles by dynamic light scattering and nanoparticle tracking analysis. Int Dairy J. 2008;18:1090–6.

    Article  CAS  Google Scholar 

  26. Filipe V, Hawe A, Jiskoot W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27:796–810.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Zimmermann AC, Mecabô A, Fagundes T, Rodrigues CA. Adsorption of Cr(VI) using Fe-crosslinked chitosan complex (Ch-Fe). J Hazard Mater. 2010;179:192–6.

    Article  PubMed  CAS  Google Scholar 

  28. Tang LG, Hon DNS. Chelation of chitosan derivatives with zinc ions. II. Association complexes of Zn2+ onto O,N-carboxymethyl chitosan. J Appl Polym Sci. 2001;79:1476–85.

    Article  CAS  Google Scholar 

  29. Byun Y, Hwang JB, Bang SH, Darby D, Cooksey K, Dawson PL, et al. Formulation and characterization of alpha-tocopherol loaded poly epsilon-caprolactone (PCL) nanoparticles. Food Sci Technol–Leb. 2011;44:24–8.

    CAS  Google Scholar 

  30. Amorim CD, Couto AG, Netz DJA, de Freitas RA, Bresolin TMB. Antioxidant idebenone-loaded nanoparticles based on chitosan and N-carboxymethylchitosan. Nanomed Nanotech Biol Med. 2010;6:745–52.

    Article  CAS  Google Scholar 

  31. Abdalla DSP, de Sena KCM. Lipid peroxidation biomarkers in atherosclerosis. Rev Nutr. 2008;21:749–56.

    Article  CAS  Google Scholar 

  32. Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indexes of lipid-peroxidation and peroxidative tissue-injury. Free Radic Biol Med. 1990;9:515–40.

    Article  PubMed  CAS  Google Scholar 

  33. Prassl R, Laggner P. Molecular structure of low density lipoprotein: current status and future challenges. Eur Biophys J. 2009;38:145–58.

    Article  PubMed  CAS  Google Scholar 

  34. Faulin TDS, de Sena-Evangelista KCM, Pacheco DB, Augusto EM, Abdalla DSP. Development of immunoassays for anti-electronegative LDL autoantibodies and immune complexes. Clin Chim Acta. 2012;413:291–7.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

EAB thanks CAPES/Brazil for his fellowship. The authors thank PRONEX e PRONEM FAPERGS/CNPq, FAPESP, INCT-IF/CNPq, CNPq/Brasilia/Brazil, Universal CNPq/MCTI and Rede Nanotecnologia Farmaceutica CAPES (Brazil) for grant financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana R. Pohlmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 118 kb)

ESM 2

(DOCX 209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bender, E.A., Cavalcante, M.F., Adorne, M.D. et al. New strategy to surface functionalization of polymeric nanoparticles: one-pot synthesis of scFv anti-LDL(−)-functionalized nanocapsules. Pharm Res 31, 2975–2987 (2014). https://doi.org/10.1007/s11095-014-1392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1392-5

KEY WORDS

Navigation