Skip to main content

Advertisement

Log in

Liposomes Containing (-)-Gossypol-Enriched Cottonseed Oil Suppress Bcl-2 and Bcl-xL Expression in Breast Cancer Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

We have demonstrated that (-)-gossypol-enriched cottonseed oil [(-)-GPCSO] can down-regulate Bcl-2 expression in MCF-7 and primary cultured human breast cancer epithelial cells (PCHBCECs). However, this agent has not been evaluated in vivo due to its limited solubility. We aimed to develop liposomes containing (-)-GPCSO to suppress Bcl-2/Bcl-xL expression.

Methods

(-)-GPCSO liposomes were prepared and evaluated for effects on breast cancer cell viability, MDA-MB-231 xenograft tumor growth, cellular Bcl-2 and Bcl-xL mRNA levels, and chemosensitivity to paclitaxel.

Results

(-)-GPCSO liposomes prepared had excellent stability. Cytotoxicity of (-)-GPCSO liposomes was significantly reduced compared to (-)-GPCSO in culture medium. Bcl-2 and Bcl-xL mRNA expression was down-regulated by (-)-GPCSO in culture medium or (-)-GPCSO liposomes in MDA-MB-231 cells. In PCHBCECs, Bcl-2 and Bcl-xL expression were down-regulated by (-)-GPCSO liposomes. (-)-GPCSO in culture medium induced only a mild reduction in Bcl-xL. In the MDA-MB-231 xenograft tumor model, (-)-GPCSO liposomes exhibited tumor-suppressive activity and significantly reduced intratumoral Bcl-2 and Bcl-xL expression. Cytotoxicity of paclitaxel was increased by pretreatment with (-)-GPCSO liposomes in MDA-MB-231 and PCHBCECs.

Conclusions

Findings suggest that (-)-GPCSO liposomes warrant continued investigation as a chemosensitizer for breast cancers exhibiting Bcl-2-/Bcl-xL-mediated drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Jemal A, Siegel R, Ward E, Murry T, Xu J, Smigal C, et al. Cancer statistics. CA Cancer J Clin. 2006;56:106–30.

    Article  PubMed  Google Scholar 

  2. Smigal C, Jemal A, Ward E, Collinides V, Smith R. Trends in breast cancer by race and ethnicity. CA Cancer J Clin. 2006;56:168–83.

    Article  PubMed  Google Scholar 

  3. Coley HM. Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treat Rev. 2008;34:378–90.

    Article  PubMed  CAS  Google Scholar 

  4. LaPensee EW, Ben-Jonathan N. Novel roles of prolactin and estrogens in breast cancer: resistance to chemotherapy. Endocr Relat Cancer. 2010;17:R91–107.

    Article  PubMed  CAS  Google Scholar 

  5. Emi M, Kim R, Tanabe K, Uchida Y, Toge T. Targeted therapy against Bcl-2-related proteins in breast cancer cells. Breast Cancer Res. 2005;7:R940–52.

    Article  PubMed  CAS  Google Scholar 

  6. Moulder SL, Symmans WF, Booser DJ, Madden TL, Lipsanen C, Yuan L, et al. Phase I/II study of G3139 (Bcl-2 antisense oligonucleotide) in combination with doxorubicin and docetaxel in breast cancer. Clin Cancer Res. 2008;14:7909–16.

    Article  PubMed  CAS  Google Scholar 

  7. Tuszynski GP, Cossu G. Differential cytotoxic effect of gossypol on human melanoma, colon carcinoma, and other tissue culture cell lines. Cancer Res. 1984;44:768–71.

    PubMed  CAS  Google Scholar 

  8. Rao PN, Wang YC, Lotzova E, Khan AA, Rao SP, Stephens LC. Antitumor effects of gossypol on murine tumors. Cancer Chemother Pharmacol. 1985;15:20–5.

    Article  PubMed  CAS  Google Scholar 

  9. Majumdar SK, Daly EP, Kleemeyer KM, Daehler CC, Baker MA. Genotoxic effects of gossypol acetic acid on cultured murine erythroleukemia cells. Environ Mol Mutagen. 1991;18:212–9.

    Article  PubMed  CAS  Google Scholar 

  10. Gilbert NE, O’Reilly JE, Chang CJ, Lin YC, Brueggemeier RW. Antiproliferative activity of gossypol and gossypolone on human breast cancer cells. Life Sci. 1995;57:61–7.

    Article  PubMed  CAS  Google Scholar 

  11. Wang X, Wang J, Wong SC, Chow LS, Nicholls JM, Wong YC, et al. Cytotoxic effect of gossypol on colon carcinoma cells. Life Sci. 2000;67:2663–71.

    Article  PubMed  CAS  Google Scholar 

  12. Benz CC, Keniry MA, Ford JM, Townsend AJ, Cox FW, Palayoor S, et al. Biochemical correlates of the antitumor and antimitochondrial properties of gossypol enantiomers. Mol Pharmacol. 1990;37:840–7.

    PubMed  CAS  Google Scholar 

  13. Shelley MD, Hartley L, Fish RG, Groundwater P, Morgan JJ, Mort D, et al. Stereo-specific cytotoxic effects of gossypol enantiomers and gossypolone in tumour cell lines. Cancer Lett. 1999;135:171–80.

    Article  PubMed  CAS  Google Scholar 

  14. Liu S, Kulp SK, Sugimoto Y, Jiang J, Chang HL, Dowd MK, et al. The (-)-enantiomer of gossypol possesses higher anticancer potency than racemic gossypol in human breast cancer. Anticancer Res. 2002;22:33–8.

    PubMed  Google Scholar 

  15. Ye W, Chang HL, Wang LS, Huang YW, Shu S, Sugimoto Y, et al. Induction of apoptosis by (-)-gossypol-enriched cottonseed oil in human breast cancer cells. Int J Mol Med. 2010;26:113–9.

    PubMed  CAS  Google Scholar 

  16. Safra T, Muggia F, Jeffers S, Tsao-Wei DD, Groshen S, Lyass O, et al. Pegylated liposomal doxorubicin (Doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol. 2000;11:1029–33.

    Article  PubMed  CAS  Google Scholar 

  17. Gibbs WJ, Drew RH, Perfect JR. Liposomal amphotericin B: clinical experience and perspectives. Expert Rev Anti-infective Ther. 2005;3:167–81.

    Article  CAS  Google Scholar 

  18. Sharma A, Mayhew E, Straubinger RMA. Antitumor effect of paclitaxel-containing liposomes in a paclitaxel-resistant murine tumor model. Cancer Res. 1993;53:5877–81.

    PubMed  CAS  Google Scholar 

  19. Boehlke L, Winter JN. Sphingomyelin/cholesterol liposomal vincristine: a new formulation for an old drug. Expert Opin Biol Ther. 2006;6:409–15.

    Article  PubMed  CAS  Google Scholar 

  20. Medina OP, Zhu Y, Kairemo K. Targeted liposomal drug delivery in cancer. Curr Pharm Des. 2004;10:2981–9.

    Article  PubMed  CAS  Google Scholar 

  21. Cui Y, Wu Z, Liu X, Ni R, Zhu X, Ma L, et al. Preparation, safety, pharmacokinetics, and pharmacodynamics of liposomes containing Brucea javanica oil. AAPS PharmSciTech. 2010;11:878–84.

    Article  PubMed  CAS  Google Scholar 

  22. Pan XQ, Zheng X, Shi G, Wang H, Ratnam M, Lee RJ. Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood. 2002;100:594–602.

    Article  PubMed  CAS  Google Scholar 

  23. Zhai G, Wu J, Zhao X, Yu B, Li H, Lu Y, et al. A liposomal delivery vehicle for the anticancer agent gossypol. Anticancer Res. 2008;28:2801–5.

    PubMed  CAS  Google Scholar 

  24. Yang X, Koh CG, Liu S, Pan X, Santhanam R, Yu B, et al. Transferrin receptor-targeted lipid nanoparticles for delivery of an antisense oligodeoxyribonucleotide against Bcl-2. Mol Pharm. 2009;6:221–30.

    Article  PubMed  CAS  Google Scholar 

  25. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002;108:153–64.

    Article  PubMed  CAS  Google Scholar 

  26. Shangary S, Johnson DE. Recent advances in the development of anticancer agents targeting cell death inhibitors in the Bcl-2 protein family. Leukemia. 2003;17:1470–81.

    Article  PubMed  CAS  Google Scholar 

  27. Kirkin V, Joos S, Zornig M. The role of Bcl-2 family members in tumorigenesis. Biochim Biophys Acta. 2004;1644:229–49.

    Article  PubMed  CAS  Google Scholar 

  28. Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL, et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 2001;15:50–65.

    Article  PubMed  CAS  Google Scholar 

  29. Hiraoka N, Ino Y, Sekine S, Tsuda H, Shimada K, Kosuge T, et al. Tumour necrosis is a postoperative prognostic marker for pancreatic cancer patients with a high interobserver reproducibility in histological evaluation. Br J Cancer. 2010;103:1057–65.

    Article  PubMed  CAS  Google Scholar 

  30. Chen N, Chen X, Huang R, Zeng H, Gong J, Meng W, et al. BCL-xL is a target gene regulated by hypoxia-inducible factor-1{alpha}. J Biol Chem. 2009;284:10004–12.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This study is supported by NIH Grant R01 ES-015212 and Cotton Inc. Grant 06–864.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert J. Lee or Young C. Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Piao, L., Xu, P. et al. Liposomes Containing (-)-Gossypol-Enriched Cottonseed Oil Suppress Bcl-2 and Bcl-xL Expression in Breast Cancer Cells. Pharm Res 28, 3256–3264 (2011). https://doi.org/10.1007/s11095-011-0498-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0498-2

KEY WORDS

Navigation