Skip to main content

Advertisement

Log in

Poly(Lactic-co-Glycolic) Acid as a Carrier for Imaging Contrast Agents

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

With the broadening field of nanomedicine poised for future molecular level therapeutics, nano- and microparticles intended for the augmentation of either single- or multimodal imaging are created with PLGA as the chief constituent and carrier.

Methods

Emulsion techniques were used to encapsulate hydrophilic and hydrophobic imaging contrast agents in PLGA particles. The imaging contrast properties of these PLGA particles were further enhanced by reducing silver onto the PLGA surface, creating a silver cage around the polymeric core.

Results

The MRI contrast agent Gd-DTPA and the exogenous dye rhodamine 6G were both encapsulated in PLGA and shown to enhance MR and fluorescence contrast, respectively. The silver nanocage built around PLGA nanoparticles exhibited strong near infrared light absorbance properties, making it a suitable contrast agent for optical imaging strategies such as photoacoustic imaging.

Conclusions

The biodegradable polymer PLGA is an extremely versatile nano- and micro-carrier for several imaging contrast agents with the possibility of targeting diseased states at a molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. NIH, National Institute of Health Roadmap for Medical Research: Nanomedicine, 2006.

  2. L. Brannon-Peppas. Polymers in controlled drug delivery. Med. Plast. Biomater. 4:34–44 (1997).

    Google Scholar 

  3. R. C. Mundargi, V. R. Babu, V. Rangaswamy, P. Patel, and T. M. Aminabhavi. Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives. J. Control Release. 125:193–209 (2008). doi:10.1016/j.jconrel.2007.09.013.

    Article  PubMed  CAS  Google Scholar 

  4. M. S. Shive, and J. M. Anderson. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28:5–24 (1997). doi:10.1016/S0169-409X(97)00048-3.

    Article  PubMed  Google Scholar 

  5. L. Brannon-Peppas. Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. Int. J. Pharm. 116:1–9 (1995). doi:10.1016/0378-5173(94)00324-X.

    Article  CAS  Google Scholar 

  6. M. Chasin, and R. S. Langer. Biodegradable polymers as drug delivery systems. Marcel Dekker, New York, 1990.

    Google Scholar 

  7. D. Blanco, and M. J. Alonso. Protein encapsulation and release from poly(lactide-co-glycolide) microspheres: effect of the protein and polymer properties and of the co-encapsulation of surfactants. Eur. J. Pharm. Biopharm. 45:285–294 (1998). doi:10.1016/S0939-6411(98)00011-3.

    Article  PubMed  CAS  Google Scholar 

  8. M. Vert, S. Li, and H. Garreau. Recent advances in the field of lactic acid/glycolic acid polymer-based therapeutic systems. Macromol. Symp. 98:633–633 (1995).

    CAS  Google Scholar 

  9. S. S. Feng, L. Mu, K. Y. Win, and G. Huang. Nanoparticles of biodegradable polymers for clinical administration of paclitaxel. Curr. Med. Chem. 11:413–424 (2004). doi:10.2174/0929867043455909.

    Article  PubMed  CAS  Google Scholar 

  10. R. A. Jain. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 21:2475–2490 (2000). doi:10.1016/S0142-9612(00)00115-0.

    Article  PubMed  CAS  Google Scholar 

  11. J. Panyam, and V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55:329–347 (2003). doi:10.1016/S0169-409X(02)00228-4.

    Article  PubMed  CAS  Google Scholar 

  12. M. Gaumet, A. Vargas, R. Gurny, and F. Delie. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 69:1–9 (2008). doi:10.1016/j.ejpb.2007.08.001.

    Article  PubMed  CAS  Google Scholar 

  13. V. Lassalle, and M. L. Ferreira. PLA nano- and microparticles for drug delivery: an overview of the methods of preparation. Macromol. Biosci. 7:767–783 (2007). doi:10.1002/mabi.200700022.

    Article  PubMed  CAS  Google Scholar 

  14. Y. Liu, H. Miyoshi, and M. Nakamura. Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer. 120:2527–2537 (2007). doi:10.1002/ijc.22709.

    Article  PubMed  CAS  Google Scholar 

  15. G. A. Silva, P. Ducheyne, and R. L. Reis. Materials in particulate form for tissue engineering. 1. Basic concepts. J. Tissue Eng. Regen. Med. 1:4–24 (2007). doi:10.1002/term.2.

    Article  PubMed  CAS  Google Scholar 

  16. C. E. Astete, and C. M. Sabliov. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed. 17:247–289 (2006). doi:10.1163/156856206775997322.

    Article  PubMed  CAS  Google Scholar 

  17. T. Betancourt, B. Brown, and L. Brannon-Peppas. Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluation. Nanomed. 2:219–232 (2007). doi:10.2217/17435889.2.2.219.

    Article  PubMed  CAS  Google Scholar 

  18. D. T. Birnbaum, J. D. Kosmala, and L. Brannon-Peppas. Optimization of preparation techniques for poly(lactic acid-co-glycolic acid) nanoparticles. J. Nanopart. Res. 2:173–181 (2000). doi:10.1023/A:1010038908767.

    Article  CAS  Google Scholar 

  19. L. Brannon-Peppas, and D. T. Birnbaum. Process to scale-up the production of biodegradable nanoparticles. Abstract, American Institute of Chemical Engineers Meeting. (2000).

  20. A. L. Doiron, K. Chu, A. Ali, and L. Brannon-Peppas. Preparation and initial characterization of biodegradable particles containing gadolinium-DTPA contrast agent for enhanced MRI. Proceedings of the National Academy of Sciences. (in press).

  21. W. J. Mulder, G. J. Strijkers, J. W. Habets, E. J. Bleeker, D. W. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay. MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. Faseb J. 19:2008–2010 (2005).

    PubMed  CAS  Google Scholar 

  22. A. Tsourkas, V. R. Shinde-Patil, K. A. Kelly, P. Patel, A. Wolley, J. R. Allport, and R. Weissleder. In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconjug. Chem. 16:576–581 (2005). doi:10.1021/bc050002e.

    Article  PubMed  CAS  Google Scholar 

  23. T. Betancourt, K. Shah, and L. Brannon-Peppas. Rhodamine-loaded poly(lactic-co glycolic acid) nanoparticles for investigation of in vitro interactions with breast cancer cells. J Mater Sci: Mater Med. (online publication Sept. 25, 2008, print copy in press).

  24. Z. A. Fayad, and V. Fuster. Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ. Res. 89:305–316 (2001). doi:10.1161/hh1601.095596.

    Article  PubMed  CAS  Google Scholar 

  25. A. L. Ayyagari, X. Zhang, K. B. Ghaghada, A. Annapragada, X. Hu, and R. V. Bellamkonda. Long-circulating liposomal contrast agents for magnetic resonance imaging. Magn. Reson. Med. 55:1023–1029 (2006). doi:10.1002/mrm.20846.

    Article  PubMed  CAS  Google Scholar 

  26. A. Z. Faranesh, M. T. Nastley, C. Perez de la Cruz, M. F. Haller, P. Laquerriere, K. W. Leong, and E. R. McVeigh. In vitro release of vascular endothelial growth factor from gadolinium-doped biodegradable microspheres. Magn. Reson. Med. 51:1265–1271 (2004). doi:10.1002/mrm.20092.

    Article  PubMed  CAS  Google Scholar 

  27. B. Gimi, A. P. Pathak, E. Ackerstaff, K. Glunde, D. Artemov, and Z. M. Bhujwalla. Molecular Imaging of Cancer: Applications of Magnetic Resonance Methods. Proc. IEEE. 93:784–799 (2005). doi:10.1109/JPROC.2005.844266.

    Article  CAS  Google Scholar 

  28. T. N. Parac-Vogt, K. Kimpe, S. Laurent, C. Pierart, L. V. Elst, R. N. Muller, and K. Binnemans. Gadolinium DTPA-monoamide complexes incorporated into mixed micelles as possible MRI contrast agents. Eur. J. Inorg. Chem. 35:38–43 (2004). doi:10.1002/ejic.200400187.

    Google Scholar 

  29. K. F. Pirollo, J. Dagata, P. Wang, M. Freedman, A. Vladar, S. Fricke, L. Ileva, Q. Zhou, and E. H. Chang. A tumor-targeted nanodelivery system to improve early MRI detection of cancer. Mol. Imaging. 5:41–52 (2006).

    PubMed  Google Scholar 

  30. H. Tokumitsu, H. Ichikawa, and Y. Fukumori. Chitosan-gadopentetic acid complex nanoparticles for gadolinium neutron-capture therapy of cancer: preparation by novel emulsion-droplet coalescence technique and characterization. Pharm. Res. 16:1830–1835 (1999). doi:10.1023/A:1018995124527.

    Article  PubMed  CAS  Google Scholar 

  31. R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn. Photoacoustic ultrasound (PAUS)-reconstruction tomography. Med. Phys. 22:1605–1609 (1995). doi:10.1118/1.597429.

    Article  PubMed  CAS  Google Scholar 

  32. M. Xu, and L. V. Wang. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77:041101 (2006). doi:10.1063/1.2195024.

    Article  Google Scholar 

  33. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz. Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo. IEEE. Trans. Med. Imaging. 24:436–440 (2005). doi:10.1109/TMI.2004.843199.

    Article  PubMed  Google Scholar 

  34. S. Park, J. Shah, S. R. Aglyamov, A.B. Karpiouk, S. Mallidi, A. Gopal, H. Moon, X. J. Zhang, W. G. Scott, and S. Y. Emelianov. Integrated system for ultrasonic, photoacoustic and elasticity imaging. Medical Imaging 2006: ultrasonic imaging and signal processing. Edited by Emelianov, Stanislav; Walker, William F. Proc. SPIE. 6147:148–155 (2006).

    Google Scholar 

  35. C. S. Chaw, Y. Y. Yang, I. J. Lim, and T. T. Phan. Water-soluble betamethasone-loaded poly(lactide-co-glycolide) hollow microparticles as a sustained release dosage form. J. Microencapsul. 20:349–359 (2003). doi:10.1080/0265204021000058447.

    Article  PubMed  CAS  Google Scholar 

  36. P. Quellec, R. Gref, L. Perrin, E. Dellacherie, F. Sommer, J. M. Verbavatz, and M. J. Alonso. Protein encapsulation within polyethylene glycol-coated nanospheres. I. Physicochemical characterization. J. Biomed. Mater. Res. 42:45–54 (1998). doi:10.1002/(SICI)1097-4636(199810)42:1<45::AID-JBM7>3.0.CO;2-O.

    Article  PubMed  CAS  Google Scholar 

  37. D. E. Owens 3rd, and N. A. Peppas. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307:93–102 (2006). doi:10.1016/j.ijpharm.2005.10.010.

    Article  PubMed  CAS  Google Scholar 

  38. A. Pucci, M. Bernabo, P. Elvati, L. I. Meza, F. Galembeck, C. A. dP. Leite, N. Tirelli, and G. Ruggeri. Photoinduced formation of gold nanoparticles into vinyl alcohol based polymers. J. Mater. Chem. 16:1058–1066 (2006). doi:10.1039/b511198f.

    Article  CAS  Google Scholar 

  39. C. A. Collinge, G. Goll, D. Seligson, and K. J. Easley. Pin tract infections: silver vs uncoated pins. Orthopedics. 17:445–448 (1994).

    PubMed  CAS  Google Scholar 

  40. G. Gosheger, J. Hardes, H. Ahrens, A. Streitburger, H. Buerger, M. Erren, A. Gunsel, F. H. Kemper, W. Winkelmann, and C. Von Eiff. Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials. 25:5547–5556 (2004). doi:10.1016/j.biomaterials.2004.01.008.

    Article  PubMed  CAS  Google Scholar 

  41. J. M. Schierholz, L. J. Lucas, A. Rump, and G. Pulverer. Efficacy of silver-coated medical devices. J. Hosp. Infect. 40:257–262 (1998). doi:10.1016/S0195-6701(98)90301-2.

    Article  PubMed  CAS  Google Scholar 

  42. Hippocrates, On Ulcers. 400 B.C.E.; Translated by Francis Adams, ©, 1994–2000.

  43. J. L. Clement, and P. S. Jarrett. Antibacterial silver. Met.-Based Drug. 1:467–482 (1994). doi:10.1155/MBD.1994.467.

    Article  CAS  Google Scholar 

  44. B. S. Atiyeh, M. Costagliola, S. N. Hayek, and S. A. Dibo. Effect of silver on burn wound infection control and healing: Review of the literature. Burns. (2006).

  45. D. W. Brett. A discussion of silver as an antimicrobial agent: alleviating the confusion. Ostomy Wound Manage. 52:34–41 (2006).

    PubMed  Google Scholar 

Download references

Acknowledgements

Generous grants from the American Heart Association and the National Science Foundation Integrative Graduate Education and Research Traineeship Program (IGERT) funded this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Brannon-Peppas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doiron, A.L., Homan, K.A., Emelianov, S. et al. Poly(Lactic-co-Glycolic) Acid as a Carrier for Imaging Contrast Agents. Pharm Res 26, 674–682 (2009). https://doi.org/10.1007/s11095-008-9786-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9786-x

KEY WORDS

Navigation