Skip to main content

Advertisement

Log in

A Photo-Activated Targeting Chemotherapy Using Glutathione Sensitive Camptothecin-Loaded Polymeric Micelles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

A novel photo-activated targeted chemotherapy was developed by photochemical internalization (PCI) of glutathione-sensitive polymeric micelles incorporating camptothecin (CPT) prepared from thiolated CPT (CPT-DP) and thiolated poly(ethylene glycol)-b-poly(glutamic acid) (PEG-b-P(Glu-DP))

Methods

PEG-b-P(Glu-DP) and CPT-DP were synthesized and characterized by 1H-NMR and gel permeation chromatography, and then mixed to prepare CPT-loaded polymeric micelles (CPT/m). The CPT release from the micelle was studied by reverse phase liquid chromatography. The PCI-activated cytotoxicity of CPT/m against HeLa cells was studied in combination with a non-toxic concentration of dendrimer phthalocyanine-loaded micelles (DPc/m) as the photosensitizer.

Results

The diameter of CPT/m was 96 nm and the drug loading was 20% (w/w). CPT was slowly released under the conditions reproducing the extracellular or endosomal environments. However, under the reductive conditions mimicking the cytosol, CPT was rapidly released achieving approximately 90% of the drug release after 24 h. The cytotoxicity of CPT/m was drastically increased on photoirradiation, whereas the CPT/m were not cytotoxic without PCI.

Conclusions

The CPT/m released the drug responding to reductive conditions. The PCI-induced endosomal escape exposed CPT/m to the cytosol triggering the drug release. Thus, CPT/m in combination with DPc/m will behave as smart nanocarriers activated only at photoirradiated tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CPT:

camptothecin

CPT-DP:

thiolated CPT

PEG-b-P(Glu-DP):

thiolated poly(ethylene glycol)-b-poly(glutamic acid)

CPT/m:

CPT-loaded polymeric micelles

DLS:

dynamic light scattering

DPc/m:

dendrimer phthalocyanine-loaded micelles

PCI:

photochemical internalization

PDT:

photodynamic therapy

PS:

photosensitizer

SPTDP:

disulfide amine linker

RPLC:

reverse phase liquid chromatography

References

  1. N. K. Mal, M. Fujiwara, and Y. Tanaka. Photocontrolled reversible release of guest molecules from coumarin modified mesoporous silica. Nature 421:350–353 (2003). doi:10.1038/nature01362.

    Article  PubMed  CAS  Google Scholar 

  2. A. Mueller, B. Bondurant, and D.F. O’Brien. Visible-light-stimulated destabilization of PEG-liposomes. Macromolecules 33:4799–4804 (2000). doi:10.1021/ma000055l.

    Article  CAS  Google Scholar 

  3. B. Bondurant, A. Mueller, and D. F. O’Brien. Photoinitiated destabilization of sterically stabilized liposomes. Biochim. Biophys. Acta. 1511:113–122 (2001). doi:10.1016/S0005-2736(00)00388-6.

    Article  PubMed  CAS  Google Scholar 

  4. J. Lu, E. Choi, F. Tamanoi, and J. I. Zink. Light-activated nanoimpeller-controlled drug release in cancer cells. Small 4:421–426 (2008). doi:10.1002/smll.200700903.

    Article  PubMed  CAS  Google Scholar 

  5. C. P. McCoy, C. Rooney, C. R. Edwards, D. S. Jones, and S. P. Gorman. Light-triggered molecule-scale drug dosing devices. J. Am. Chem. Soc. 129:9572–9573 (2007). doi:10.1021/ja073053q.

    Article  PubMed  CAS  Google Scholar 

  6. K. Berg, P. K. Selbo, L. Prasmickaite, T. E. Tjelle, K. Sandvig, J. Moan, G. Gaudernack, Ø. Fodstad, S. Kjølsrud, H. Anholt, G. H. Rodal, S. K. Rodal, and A. Høgset. Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. Cancer Res. 59:1180–1183 (1999).

    PubMed  CAS  Google Scholar 

  7. P. K. Selbo, K. Sandvig, V. Kirveliene, and K. Berg. Release of gelonin from endosomes and lysosomes to cytosol by photochemical internalization. Biochim. Biophys. Acta. 1475:307–313 (2000).

    PubMed  CAS  Google Scholar 

  8. A. Høgset, L. Prasmickaite, T. E. Tjelle, and K. Berg. Photochemical transfection: a new technology for light-induced, site-directed gene delivery. Hum. Gene Ther. 11:869–880 (2000). doi:10.1089/10430340050015482.

    Article  PubMed  Google Scholar 

  9. A. Høgset, L. Prasmickaite, P. K. Selbo, M. Hellum, B. Ø. Engesæter, A. Bonsted, and K. Berg. Photochemical internalisation in drug and gene delivery. Adv. Drug Deliv. Rev. 56:95–115 (2004). doi:10.1016/j.addr.2003.08.016.

    Article  PubMed  CAS  Google Scholar 

  10. N. Nishiyama, A. Iriyama, W-D. Jang, K. Miyata, K. Itaka, Y. Inoue, H. Takahashi, Y. Yanagi, Y. Tamaki, H. Koyama, and K. Kataoka. Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat. Mater. 4:934–941 (2005). doi:10.1038/nmat1524.

    Article  PubMed  CAS  Google Scholar 

  11. N. Nishiyama, Arnida, W-D. Jang, K. Date, K. Miyata, and K. Kataoka. Photochemical enhancement of transgene expression by polymeric micelles incorporating plasmid DNA and dendrimer-based photosensitizer. J. Drug Targeting 14:413–424 (2006). doi:10.1080/10611860600834508.

    Article  CAS  Google Scholar 

  12. Arnida, N. Nishiyama, W-D. Jang, Y. Yamasaki, and K. Kataoka. Novel ternary polyplex of triblock copolymer, pDNA and anionic dendrimer phthalocyanine for photochemical enhancement of transgene expression. J. Control. Release 116:e75–e77 (2006). doi:10.1016/j.jconrel.2006.09.058.

    Article  PubMed  CAS  Google Scholar 

  13. Arnida, N. Nishiyama, N. Kanayama, W-D. Jang, Y. Yamasaki, and K. Kataoka. PEGylated gene nanocarriers based on block catiomers bearing ethylenediamine repeating units directed to remarkable enhancement of photochemical transfection. J. Control. Release 115:208–215 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. K. R. Weishaupt, C. J. Gomer, and T. J. Dougherty. Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res. 36:2326–2329 (1976).

    PubMed  CAS  Google Scholar 

  15. H. I. Pass. Photodynamic therapy in oncology: mechanisms and clinical use. J. Natl. Cancer Inst. 85:443–456 (1993). doi:10.1093/jnci/85.6.443.

    Article  PubMed  CAS  Google Scholar 

  16. S. B. Brown, E. A. Brown, and I. Walker. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 5:497–508 (2004). doi:10.1016/S1470-2045(04)01529-3.

    Article  PubMed  CAS  Google Scholar 

  17. A. Meister, and M. E. Anderson. Glutathione. Annu. Rev. Biochem. 52:711–760 (1983). doi:10.1146/annurev.bi.52.070183.003431.

    Article  PubMed  CAS  Google Scholar 

  18. K. Kataoka, A. Harada, and Y. Nagasaki. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 47:113–131 (2001). doi:10.1016/S0169-409X(00)00124-1.

    Article  PubMed  CAS  Google Scholar 

  19. R. Duncan. The dawning era of polymer therapeutics. Nature Rev. Drug Discov. 2:347–360 (2003). doi:10.1038/nrd1088.

    Article  CAS  Google Scholar 

  20. N. Nishiyama, and K. Kataoka. Current sate, achievements, and future prospects of polymeric micells as nanocarriers for drug and gene delivery. Pharmacol. & Ther. 112:630–648 (2006). doi:10.1016/j.pharmthera.2006.05.006.

    Article  CAS  Google Scholar 

  21. A. Lavasanifar, J. Samuel, and G. S. Kwon. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv. Drug Deliv. Rev. 54:169–190 (2002). doi:10.1016/S0169-409X(02)00015-7.

    Article  PubMed  CAS  Google Scholar 

  22. Y. Matsumura, and H. Maeda. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 46:6387–6392 (1986).

    PubMed  CAS  Google Scholar 

  23. W-D. Jang, N. Nishiyama, G-D Zhang, A. Harada, D-L Jiang, S. Kawauchi, Y. Morimoto, M. Kikuchi, H. Koyama, T. Aida, and K. Kataoka. Supramolecular nanocarrier of anionic dendrimer porphyrins with cationic block copolymers modified with poly(ethylene glycol) to enhance intracellular photodynamic efficacy. Angew. Chemie., Int. Ed. 117:423–427 (2005). doi:10.1002/ange.200461603.

    Article  Google Scholar 

  24. W-D. Jang, Y. Nakagishi, N. Nishiyama, S. Kawauchi, Y. Morimoto, M. Kikuchi, and K. Kataoka. Polyion complex micelles for photodynamic therapy: Incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property. J Control. Release 113:73–79 (2006). doi:10.1016/j.jconrel.2006.03.009.

    Article  PubMed  CAS  Google Scholar 

  25. J. O’Leary, and F. M. Muggia. Camptothecins: a review of their development and schedules of administration. Eur. J. Cancer 34:1500–1508 (1998). doi:10.1016/S0959-8049(98)00229-9.

    Article  PubMed  CAS  Google Scholar 

  26. B. C. Giovanella, N. Harris, J. Mendoza, Z. Cao, J. Liehr, and J. S. Stehlin. Dependence of anticancer activity of camptothecins on maintaining their lactone function. Ann. New York Acad. Sci. 922:27–35 (2000).

    Article  CAS  Google Scholar 

  27. N. Nishiyama, S. Okazaki, H. Cabral, M. Miyamoto, Y. Kato, Y. Sugiyama, K. Nishio, Y. Matsumura, and K. Kataoka. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res. 63:8977–8983 (2003).

    PubMed  CAS  Google Scholar 

  28. A. C. H. Ng, X. Li, and D. K. P. Ng. Synthesis and photophysical properties of nonaggregated phthalocyanines bearing dendritic substitutes. Macromolecules 32:5292–5298 (1999). doi:10.1021/ma990367s.

    Article  CAS  Google Scholar 

  29. A. Harada, and K. Kataoka. Formation of polyion complex micelles in an aqueous milieu form a pair of oppositely charged block copolymers with poly(ethylene glycol) segments. Macromolecules 28:5294–5299 (1995). doi:10.1021/ma00119a019.

    Article  CAS  Google Scholar 

  30. Y. Kakizawa, A. Harada, and K. Kataoka. Environment-sensitive stabilization of core-Shell structured polyion complex micelle by reversible cross-Linking of the core through disulfide bond. J. Am. Chem. Soc. 121:11247–11248 (1999). doi:10.1021/ja993057y.

    Article  CAS  Google Scholar 

  31. K. Miyata, Y. Kakizawa, N. Nishiyama, A. Harada, Y. Yamasaki, H. Koyama, and K. Kataoka. Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression. J. Am. Chem. Soc. 126:2355–2361 (2004). doi:10.1021/ja0379666.

    Article  PubMed  CAS  Google Scholar 

  32. K. Miyata, Y. Kakizawa, N. Nishiyama, Y. Yamasaki, T. Watanabe, M. Kohara, and K. Kataoka. Practically applicable cross-linked polyplex micelle with high tolerability against freeze-drying for in vivo gene delivery. J. Control. Release. 109:15–23 (2005). doi:10.1016/j.jconrel.2005.09.043.

    Article  PubMed  CAS  Google Scholar 

  33. K. Berg, A. Dietze, O. Kaalhus, and A. Høgset. Site-specific drug delivery by photochemical internalization enhances the antitumor effect of Bleomycin. Clin. Cancer Res. 11:8476–8485 (2005). doi:10.1158/1078-0432.CCR-05-1245.

    Article  PubMed  CAS  Google Scholar 

  34. R. Greenwald, A. Pendri, C. Conover, C. Gilbert, R. Yang, and J. Xia. Drug delivery systems. 2. Camptothecin-20-O- poly(ethylene glycol) ester transport forms. J. Med. Chem. 39:1938–1940 (1996). doi:10.1021/jm9600555.

    Article  PubMed  CAS  Google Scholar 

  35. B. B. Lundberg. Biologically active camptothecin derivatives for incorporation into liposome bilayers and lipid emulsions. Anticancer Drug Design. 13:453–461 (1998).

    CAS  Google Scholar 

  36. X. Liu, B. C. Lynn, J. Zhang, L. Song, D. Bom, W. Du, D.P. Curran, and T. G. Burke. A versatile prodrug approach for liposomal core-loading of water-insoluble camptothecin anticancer drugs. J. Am. Chem. Soc. 124:7650–7661 (2002). doi:10.1021/ja0256212.

    Article  PubMed  CAS  Google Scholar 

  37. A. Shenderova, T. G. Burke, and S. P. Schwendeman. Stabilization of 10-hydroxycamptothecin in poly(lactide-co-glycolide) microsphere delivery vehicles. Pharm. Res. 14:1406–1414 (1997). doi:10.1023/A:1012172722246.

    Article  PubMed  CAS  Google Scholar 

  38. B. Ertl, and P. Platzer. Poly(D,L-lactide-co-glycolide) microspheres for sustained delivery and stabilization of camptothecin. J. Control. Release 61:305–317 (1999). doi:10.1016/S0168-3659(99)00122-4.

    Article  PubMed  CAS  Google Scholar 

  39. K. M. Tyner, S. R. Schiffman, and E. P. Giannelis. Nanobiohybrids as delivery vehicles for camptothecin. J. Control. Rel. 95:501–514 (2004). doi:10.1016/j.jconrel.2003.12.027.

    Article  CAS  Google Scholar 

  40. P. Opanasopit, M. Yokoyama, M. Watanabe, K. Kawano, Y. Maitani, and T. Okano. Block copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting. Pharm. Res. 21:2001–2008 (2004). doi:10.1023/B:PHAM.0000048190.53439.eb.

    Article  PubMed  CAS  Google Scholar 

  41. R. Barreiro-Iglesias, L. Bromberg, M. Temchenko, T. A. Hatton, A. Concheiro, and C. Alvarez-Lorenzo. Solubilization and stabilization of camptothecin in micellar solutions of pluronic-g-poly(acrylic acid) copolymers. J. Control. Release. 97:537–549 (2004).

    PubMed  CAS  Google Scholar 

  42. P-J. Lou, P-S. Lai, M-J Shieh, A. J. MacRobert, K. Berg, and S. G. Bown. Reversal of doxorubicin resistance in breast cancer cells by photochemical internalization. Int. J. Cancer 119:2692–2698 (2006). doi:10.1002/ijc.22098.

    Article  PubMed  CAS  Google Scholar 

  43. P. S. Lai, P. J. Lou, C. L. Peng, C. L. Pai, W. N. Yen, M. Y. Huang, T. H. Young, and M. J. Shieh. Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy. J. Control. Release 122:39–36 (2007). doi:10.1016/j.jconrel.2007.06.012.

    Article  PubMed  CAS  Google Scholar 

  44. M. A. M Capella, and L. S. Capella. A light in multidrug resistance: photodynamic treatment of multidrug-resistant tumors. J. Biomed. Sci. 10:361–366 (2003). doi:10.1007/BF02256427.

    Article  Google Scholar 

  45. D. K. Adigbli, D. G. G. Wilson, N. Farooqui, E. Sousi, P. Risley, I. Taylor, A. J. MacRobert, and M. Loizidou. Photochemical internalisation of chemotherapy potentiates killing of multidrug-resistant breast and bladder cancer cells. Br. J. Cancer 97:502–512 (2007). doi:10.1038/sj.bjc.6603895.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENT

This research was supported in part by the New Energy and Industrial Technology Development Organization of Japan (project code: P06042), Grant-in-Aid for Cancer Research from the Ministry of Education, Culture, Sports, Science and Technology as well as Grant-in-Aid for Cancer Research and Nanomedicine projects from Ministry of Health, labour and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Kataoka.

Electronic supplementary materials

Below is the link to the electronic supplementary materials

ESM 1

(DOC 52 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabral, H., Nakanishi, M., Kumagai, M. et al. A Photo-Activated Targeting Chemotherapy Using Glutathione Sensitive Camptothecin-Loaded Polymeric Micelles. Pharm Res 26, 82–92 (2009). https://doi.org/10.1007/s11095-008-9712-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9712-2

KEY WORDS

Navigation