Skip to main content
Log in

Analytical Analysis of Different Karats of Gold Using Laser Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Time of Flight Mass Spectrometer (LA-TOF-MS)

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Laser induced breakdown spectroscopy (LIBS) coupled with a laser ablation time of flight mass spectrometer (LA-TOF-MS) has been developed for discrimination/analysis of the precious gold alloys cartage. Five gold alloys of Karats 18K, 19K, 20K, 22K and 24K having certified composition of gold as 75, 79, 85, 93 and 99.99% were tested and their precise elemental compositions were determined using the laser produced plasma technique. The plasma was generated by focusing beam of a Nd:YAG laser on the target in air and its time integrated emission spectra were registered in the range 250–870 nm. The calibration free LIBS technique (CF-LIBS) was used for the quantitative determination of the constituent elements present in different Karats of gold. Elemental compositions of these gold alloys were also determined using a Laser Ablation time of flight mass spectrometer (LA-TOF-MS). The LIBS limit of detection was calculated from the calibration curves for copper, silver and gold. Results of CF-LIBS and LA-TOF-MS are in excellent agreement with the certified values. It is demonstrated that LIBS coupled with LA-TOF-MS is an efficient technique that can be used to analyze any precious alloys in a fraction of a second.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Derby WG (1917) Furnace methods of assaying for gold and silver. In: Scott WW (ed) Standard methods of chemical analysis. Van Nostrand, New Yrok, pp 739–775

    Google Scholar 

  2. Davis JR (1998) Metals handbook. ASM International, Materials Park, pp 624–628

    Google Scholar 

  3. Corti CW (2001) Assaying of gold jewellery: choice of technique. Gold Technol 32:20–30

    Google Scholar 

  4. Brill M (1997) Analysis of carat gold. Gold Technol 22:10–25

    Google Scholar 

  5. Marucco A, Stankiewicz W (1998) Development of an XRF spectrometry analytical method for gold determination in gold jewellery alloys. Gold Technol 24:14–22

    Google Scholar 

  6. Marucco A (2004) Low-energy ED-XRF spectrometry application in gold assaying. Nucl Instrum Methods B 213:486–490

    Article  CAS  Google Scholar 

  7. Honkimaki V, Hamalainen K, Manninen S (1996) Quantitative X-ray fluorescence analysis using fundamental parameters: application to gold jewelry. X-Ray Spectrom 25:215–220

    Article  CAS  Google Scholar 

  8. Zheng L, Kulkarni P (2017) Rapid elemental analysis of aerosols using atmospheric glow discharge optical emission spectroscopy. Anal Chem 89:6551–6558

    Article  CAS  Google Scholar 

  9. Lee DH, Han SC, Kim TH, Yun J (2011) Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy. Anal Chem 83:9456–9461

    Article  CAS  Google Scholar 

  10. Tsai SJJ, Chen SY, Chung YS, Tseng PC (2006) Spatially resolved, laser-induced breakdown spectroscopy, development, and application for the analysis of Al and Si in nickel-based alloys. Anal Chem 78:7432–7439

    Article  CAS  Google Scholar 

  11. Griem HR (1964) Plasma spectroscopy. McGraw-Hill Inc, New York

    Google Scholar 

  12. Griem HR (1997) Principles of plasma spectroscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  13. Miziolek A, Palleschi WV, Schechter I (2006) Laser-induced breakdown spectroscopy fundamentals and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  14. Cremers DA, Radziemski LJ (2006) Handbook of laser-induced breakdown spectroscopy. Wiley, New York

    Book  Google Scholar 

  15. Noll R (2012) Laser-induced breakdown spectroscopy—fundamentals and applications. Springer, Heidelberg

    Book  Google Scholar 

  16. Kundel ML, Huang RJ, Thorenz UR, Bosle J, Mann MJD, Ries M, Hoffmann T (2012) Application of time-of-flight aerosol mass spectrometry for the online measurement of gaseous molecular iodine. Anal Chem 84:1439–1445

    Article  CAS  Google Scholar 

  17. Cremers DA, Radziemski LJ (2006) Handbook of laser-induced breakdown spectroscopy. Wiley, New York

    Book  Google Scholar 

  18. Noll R, Begemann CF, Brunk M, Connemann S, Meinhardt C, Scharun M, Sturm V, Makowe J, Gehlen C (2014) Laser-induced breakdown spectroscopy expands into industrial applications. Spectrochim Acta Part B 93:41–51

    Article  CAS  Google Scholar 

  19. Abdulmadjid SN, Marpaung AM, Pardede M, Suliyanti MM, Hidayah AN, Jobiliong E, Lie TJ, Tjia MO, Kurniawan KH (2012) Quantitative analysis of deuterium in zircaloy using double-pulse laser-induced breakdown spectrometry (LIBS) and helium gas plasma without a sample chamber. Anal Chem 84:2224–2231

    Article  Google Scholar 

  20. Tognoni E, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Mueller M, Panne U, Gornushkin I (2007) numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma. Spectrochim Acta, Part B 62:1287–1302

    Article  Google Scholar 

  21. Borgia I, Burgio LMF, Corsi M, Fantoni R, Palleschi V, Salvetti A, Squarcialupi MS, Togoni E (2000) Self-calibrated quantitative elemental analysis by laser-induced plasma spectroscopy: application to pigment analysis. J Cult Herritage 1:281–286

    Article  Google Scholar 

  22. Harilal SS, Shay BO, Tillah MS (2005) Spectroscopic characterization of laser-induced tin plasma. J Appl Phys 98:0133061–0133067

    Google Scholar 

  23. McWhirter RWP (1965) In: Huddlestone RH, Leonard SL (eds) Plasma diagnostic techniques. Academic, New York

    Google Scholar 

  24. Cristoforetti G, De Giacomo A, Dell’Aglio M, Legnaioli S, Togoni E, Palleschi V, Omenetto N (2010) Local thermodynamic equilibrium in laser induced breakdown spectroscopy: beyond the Mcwhirter criterion. Spectrochim Acta, Part B 65:86–95

    Article  Google Scholar 

  25. Cristoforetti G, Tognoni E, Gizzi LA (2013) Thermodynamic equilibrium states in laser-induced plasmas: from the general case to laser-induced breakdown spectroscopy plasmas. Spectrochim Acta Part B 90:1–22

    Article  CAS  Google Scholar 

  26. Rifai K, Laflamme M, Constantina M, Vidal F, Sabsabi M, Blouin A, Bouchardb P, Fytas K, Castello M, Nguegang B (2017) Analysis of gold in rock samples using laser-induced breakdown spectroscopy: matrix and heterogeneity effects. Spectrochim Acta Part B 134:33–41

    Article  CAS  Google Scholar 

  27. Burakov VS, Raikov SN (2007) Quantitative analysis of alloys and glasses by a calibration-free method using LIBS. Spectrochim Acta, Part B 62:217–223

    Article  Google Scholar 

  28. Corsi M, Cristoforetti G, Palleschi V, Salvetti A, Tognoni E (2001) A fast and accurate method for the determination of precious alloys caratage by LIPS. Eur Phys J D 13:373–377

    Article  CAS  Google Scholar 

  29. Sun L, Yu H (2009) Correction of self-absorption effect in calibration free laser-induced breakdown spectroscopy by an internal reference method. Talanta 79:388–395

    Article  CAS  Google Scholar 

  30. Sherbini AM, Sherbini TM, Hegazy H, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, Salvetti A, Tognoni E (2005) Evaluation of self-absorption coefficient of aluminium emission lines in laser induced breakdown spectroscopy measurements. Spectrochim Acta Part B 60:1573–1579

    Article  Google Scholar 

  31. Shaikh NM, Rashid B, Hafeez S, Jamil Y, Baig MA (2006) Measurement of ekectron density and temperature of laser induced zinc plasma. J Phys D Appl Phys 39:13841392

    Google Scholar 

  32. Ahmed N, Umar ZA, Ahmed R, Baig MA (2017) On the elemental analysis of different cigarette brands using laser induced breakdown spectroscopy and laser-ablation time of flight mass spectrometry. Spectrochim Acta Part B 136:39–44

    Article  CAS  Google Scholar 

  33. Ahmed N, Ahmed R, Rafiqe M, Baig MA (2016) A comparative study of Cu–Ni alloy using LIBS, LA-TOF, EDX, and XRF. Laser Part Beams 35:1–9

    Article  Google Scholar 

  34. Iqbal J, Mahmood S, Tufail I, Asghar H, Ahmed R, Baig MA (2015) On the use of laser induced breakdown spectroscopy to characterize the naturally existing crystal in Pakistan and its optical emission spectrum. Spectrochim Acta Part B 111:80–86

    Article  CAS  Google Scholar 

  35. Ahmed N, Ahmed R, Umar ZA, Baig MA (2017) Laser ionization time of flight mass spectrometer for isotope mass detection and elemental analysis ofmaterials. Laser Phys 27:086001

    Article  Google Scholar 

  36. Hannaford P, Larkins PL, Lowe RM (1981) Radiative lifetimes and branching ratios for the 62P0 levels of gold. J Phys B: At Mol Phys 14:2321–2327

    Article  CAS  Google Scholar 

  37. Migdalek J (1978) Relativistic oscillator strengths for some transitions in Cu(I), Ag(I) and Au(I). J Quant Spectrosc Radiat Transfer 20:81–87

    Article  CAS  Google Scholar 

  38. Migdałek J (1976) Theoretical oscillator strengths III. Transitions in Au I, Hg II, Pb IV, and Bi V spectra. Can J Phys 54:2272–2278

    Article  Google Scholar 

  39. Beideck DJ, Curtis LJ, Irving RE, Maniak ST, Hellborg R, Johansson SG, Martinson I, Rosberg M (1993) J Opt Soc Am B 10:977–981

    Article  Google Scholar 

  40. Bielski A (1975) A critical survey of atomic transition probabilities for CuI. J Quant Spectrosc Radiat Transfer 15:463–472

    Article  CAS  Google Scholar 

  41. NIST database. http://physics.nist.gov/PhysRefData/ASD/lines_form.html

  42. Aguilera JA, Aragon C (2007) Apparent excitation temperature in laser-induced plasma. J Phys Conf Ser 59:210–217

    Article  CAS  Google Scholar 

  43. Aguilera JA, Aragon C (2004) Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions. Comparison of local and spatially integrated measurements. Spectrochim Acta Part B 59:1861–1876

    Article  Google Scholar 

  44. Konjevic N (1990) Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms. J Phys Chem Ref Data 31:3

    Google Scholar 

  45. Dimitrijevic MS, Brechot SS (2003) Stark broadening of AgI spectral lines. At Data Nucl Data Tables 85:269–290

    Article  CAS  Google Scholar 

  46. Gigososa MA, Gnzalezb MA, Cardenoso V (2003) Computer simulated Balmer-alpha, -beta and -gamma Stark line profiles for non-equilibrium plasmas diagnostics. Spectrochim Acta Part B 58:1489–1504

    Article  Google Scholar 

  47. Praher B, Palleschi V, Viskup R, Heitz J, Pedarnig JD (2010) Calibration free laser-induced breakdown spectroscopy of oxide materials. Spectrochim Acta Part B 65:671–679

    Article  Google Scholar 

  48. Abbass Q, Ahmed N, Ahmed R, Baig MA (2016) A comparative study of calibration free methods for the elemental analysis by laser induced breakdown spectroscopy. Plasma Chem Plasma Process 36:1287–1299

    Article  CAS  Google Scholar 

  49. Gomba JM, Angelo CD, Bertuccelli D (2001) Spectroscopic characterization of laser induced breakdown in aluminum lithium alloy samples for quantitative determination of traces. Spectrochim Acta Part B 56:695–705

    Article  Google Scholar 

  50. Tawfik W, Mohamed Y (2008) Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera. Opt Laser Technol 40:30–38

    Article  Google Scholar 

  51. Drogoff L, Margotb J, Chakera M, Sabsabi M, Barthelemy O, Johnstona T (2001) Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys. Spectrochim Acta Part B 56:987–1002

    Article  Google Scholar 

  52. Ingle J, Crouch S, Lafferty K (1988) Spectrochemical analysis. Prentice Hall, New Jersey

    Google Scholar 

  53. Giacomo AD, Koral C, Valenza G, Gaudiuso R, Aglio MD (2016) Nanoparticle enhanced laser-induced breakdown spectroscopy for microdrop analysis at subppm level. Anal Chem 88:5251–5257

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Pakistan Academy of Sciences for the financial assistance to acquire the Laser system and for the fabrication of the Laser ablation Time of Flight Spectrometer. The Higher Education Commission of Pakistan gratefully acknowledged for the Indigenous Ph.D. Scholarship to Mr. Nasar Ahmed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aslam Baig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, N., Ahmed, R. & Baig, M.A. Analytical Analysis of Different Karats of Gold Using Laser Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Time of Flight Mass Spectrometer (LA-TOF-MS). Plasma Chem Plasma Process 38, 207–222 (2018). https://doi.org/10.1007/s11090-017-9862-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9862-2

Keywords

Navigation