Skip to main content
Log in

Radiation pattern direction control in nano-antenna (tunable nano-antenna)

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Radiation pattern direction control is one of the most important capabilities of nanoantennas required in optical wireless nano-link for emitting into or detecting from the desired direction. In this work, a novel triangle nanoantenna operating in the near-infrared region is proposed in which the angle of maximum power emission is tuned via rotating one of the triangles and fixing the remaining ones. The advantage of this theme is the result of using piezoelectricity to tune the gap between nano-particles in a nano-antenna and also the possibility of tuning the angle of the pattern up to 25°. By adding a nano-particle to the structure and varying its location, the radiation pattern can be rotated in the desired angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Afridi, A., Kocabas, S.E.: Beam steering and impedance matching of plasmonic horn nano-antennas. Opt. Express 24(22), 25647–25652 (2016)

    Article  ADS  Google Scholar 

  • Agio, M., Alù, A.: Optical Antennas. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  • Alù, A., Engheta, N.: Enhanced directivity from subwavelength infrared/optical nano-antennas loaded with plasmonic materials or metamaterials. IEEE Trans. Antennas Propag. 55(11), 3027–3039 (2007)

    Article  ADS  Google Scholar 

  • Alù, A., Engheta, N.: Wireless at the nanoscale: optical interconnects using matched nanoantennas. Phys. Rev. Lett. 104(21), 2139021–2139024 (2010)

    Article  Google Scholar 

  • Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    Article  ADS  Google Scholar 

  • Bahari, B., Tellez-Limon, R., Kante, B.: Directive and enhanced spontaneous emission using shifted cubes nano-antenna. J. Appl. Phys. 120, 093106 (2016)

    Article  ADS  Google Scholar 

  • Balanis, C.A.: Antenna Theory: Analysis and Design. Wiley, Hoboken (1982)

    Google Scholar 

  • Baranov, D.G., Makarov, S., Belov, P.A., Krasnok, A.: Tuning of near- and far-field properties of all-dielectric dimer nano-antennas via ultrafast electron-hole plasma photoexcitation. Laser Photonics Rev. 10(6), 1009–1015 (2016)

    Article  ADS  Google Scholar 

  • Bar-Lev, D., Scheuer, J.: Efficient second-harmonic generation using nonlinear substrates patterned by nano-antenna arrays. Opt. Express 21(24), 29165–29178 (2013)

    Article  ADS  Google Scholar 

  • Belov, P.A., Krasnok, A.E., Filonov, D.S.: Superdirective all-dielectric nano-antennas: theory and experiment. In: IOP Conference Series: Materials Science and Engineering, vol. 67 (2014)

    Article  Google Scholar 

  • Clemens, M., Weiland, T.: Discrete electromagnetism with finite integration technique. Prog. Electromagn. Res. 32, 65–87 (2001)

    Article  Google Scholar 

  • Cubukcu, E., Kort, E.A., Crozier, K.B., Capasso, F.: Plasmonic laser antenna. Appl. Phys. Lett. 89, 093120 (2006)

    Article  ADS  Google Scholar 

  • da Costa, K.Q., Dmitriev, V.A.: Analysis of modified bowtie nano-antennas in the excitation and emission regimes. J. Microw. Optoelectron. Electromagn. Appl. 10(1), 232–242 (2011)

    Article  Google Scholar 

  • de Arquer, F.P.G., Volski, V., Verellen, N., Vandenbosch, G.A.E., Moshchalkov, V.V.: Engineering the input impedance of optical nano dipole antennas: materials, geometry and excitation effect. IEEE Trans. Antennas Propag. 59(9), 3144–3153 (2011)

    Article  ADS  Google Scholar 

  • DeRose, C.T., Kekatpure, R.D., Trotter, D.C., Starbuck, A., Wendt, J.R., Yaacobi, A., Watts, M.R., Chettiar, U., Engheta, N., Davids, P.S.: Electronically controlled optical beam-steering by an active phased array of metallic nano-antennas. Opt. Express 21(4), 5198–5208 (2013)

    Article  ADS  Google Scholar 

  • DeWilde, Y., et al.: Thermal radiation scanning tunneling microscopy. Nature 444, 740 (2006)

    Article  ADS  Google Scholar 

  • Dorfmuller, J., Dregely, D., Esslinger, M., Khunsin, W., Vogelgesang, R., Kern, K., Giessen, H.: Near-field dynamics of optical Yagi–Uda nano-antennas. Nano Lett. 11, 2819–2824 (2011)

    Article  ADS  Google Scholar 

  • Dregely, D., Taubert, R., Dorfmüller, J., Vogelgesang, R., Kern, K., Giessen, H.: 3D optical Yagi–Uda nano-antenna array. Nat. Commun. 2, 267 (2011)

    Article  ADS  Google Scholar 

  • Ghanim, A.M., Hussein, M., Hameed, M.F.O., Yahia, A., Obayya, S.S.: Highly directive hybrid Yagi–Uda nano-antenna for radiation emission enhancement. IEEE Photonics J. 8(5), 1–12 (2016)

    Article  Google Scholar 

  • Giessen, H., Lippitz, M.: Directing light emission from quantum dots. Science 329, 910–911 (2012)

    Article  ADS  Google Scholar 

  • Greffet, J.-J.: Nano-antennas for light emission. Science 308(5728), 1561–1563 (2005)

    Article  Google Scholar 

  • Hofmann, H.F., Kosako, T., Kadoya, Y.: Design parameters for a nano-optical Yagi–Uda antenna. IOP Sci. 9, 217 (2007)

    Google Scholar 

  • Krasnok, A.E., Miroshnichenko, A.E., Belov, P.A., Kivshar, Y.S.: All-dielectric optical nano-antennas. Opt. Express 20(18), 20599–20604 (2012)

    Article  ADS  Google Scholar 

  • Liaw, J.-W.: Analysis of a Bowtie nano-antenna for the enhancement of spontaneous emission. IEEE J. Sel. Top. Quantum Electron. 14(6), 1441–1447 (2008)

    Article  ADS  Google Scholar 

  • Merlo, J.M., Nesbitt, N.T., Calm, Y.M., Rose, A.H., D’Imperio, L., Yang, C., Naughton, J.R., Burns, M.J., Kempa, K., Naughton, M.J.: Wireless communication via nanoscale plasmonic antenna. Sci. Rep. 6, 317101–317108 (2016)

    Article  Google Scholar 

  • Munárriz, J., Malyshev, A.V., Malyshev, V.A., Knoester, J.: Optical nano-antennas with tunable radiation patterns. NanoLett 13, 444–450 (2013)

    Article  ADS  Google Scholar 

  • Noskov, R.E., Krasnok, A.E., Kivshar, YuS: Nonlinear metal–dielectric nano-antennas for light switching and routing. New J. Phys. 14, 093005 (2012)

    Article  ADS  Google Scholar 

  • Pors, A., Willatzen, M., Albrektsen, O., Bozhevolnyi, S.I.: From plasmonic nano-antennas to split-ring resonators: tuning scattering strength. J. Opt. Soc. 27(8), 1680–1687 (2010)

    Article  ADS  Google Scholar 

  • Rahimi, Z.: The finite integration technique (FIT) and the application in lithography simulations, Ph.D. dissertation, Friedrich-Alexander University, Erlangen (2011)

  • Roxworthy, B.J., Ko, K.D., Kumar, A., Fung, K.H., Chow, E.K.C., Liu, G.L., Fang, N.X., Toussaint, K.C.: Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. Nano Lett. 12, 796–801 (2012)

    Article  ADS  Google Scholar 

  • Sergaeva, O.N., Savelev, R.S., Baranov, D.G., Krasnok, A.E.: Core-shell Yagi–Uda nano-antenna for highly efficient and directive emission. In: IOP Conference Series (2017)

  • Su, L., Yuan, H., Lu, G., Rocha, S., Orrit, M., Hofkens, J., Uji, H.: Super-resolution localization and defocused fluorescence microscopy on resonantly coupled single-molecule, single-nanorod hybrids. ACS Nano 10(2), 2455–2466 (2016)

    Article  Google Scholar 

  • Tucker, E., Archangel, J.D., Raschke, M., Briones, E., Javier González, F., Boreman, G.: Near-field mapping of dipole nano-antenna-coupled bolometers. AIP 114(3), 033109 (2013)

    Google Scholar 

  • Wertz, E., Isaacoff, B.P., Flynn, J.D., Biteen, J.S.: Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nano-antenna on the nanometer scale. Nano Lett. 15(4), 2662–2670 (2015)

    Article  ADS  Google Scholar 

  • Wissert, M.D., Schell, A.W., Ilin, K.S., Siegel, M., Eisler, H.-J.: Nanoengineering and characterization of gold dipole nano-antennas with enhanced integrated scattering properties. IOP 20, 425203 (2009)

    Google Scholar 

  • Wu, Y.-M., Li, L.-W., Liu, B.: Gold Bow-tie shaped aperture nanoantenna: wide band near-field resonance and far-field radiation. IEEE Trans. Magn. 46(6), 1918–1921 (2010)

    Article  ADS  Google Scholar 

  • Xiong, X.Y.Z., Jiang, L.J., Sha, W.E.I., Lo, Y.H., Chew, W.C.: A novel beam-steering nonlinear nano-antenna with surface plasmon resonance. In: URSI International Symposium on Electromagnetic Theory (2016)

  • Yousefi, L., Foster, A.C.: Waveguide-fed optical hybrid plasmonic patch nano-antenna. Opt. Express 20(16), 18326–18335 (2012)

    Article  ADS  Google Scholar 

  • Zou, L., Withayachumnankul, W., Shah, C.M., Mitchell, A., Bhaskaran, M., Sriram, S., Fumeaux, C.: Dielectric resonator nano-antennas at visible frequencies. Opt. Express 21(1), 1344–1352 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Rostami or I. S. Amiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beheshti Asl, A., Rostami, A. & Amiri, I.S. Radiation pattern direction control in nano-antenna (tunable nano-antenna). Opt Quant Electron 51, 365 (2019). https://doi.org/10.1007/s11082-019-2085-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2085-4

Keywords

Navigation