Skip to main content
Log in

Circuit model for analysis of SOA-based photonic switch

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper presents an equivalent lumped element electric circuit model for traveling wave semiconductor optical amplifier (SOA) in integrated circuit applications. The model facilitates incorporation of chip and package parasitic elements of SOA. The model is used to represent an all optical 2 × 2 switch based on cross gain modulation in SOA capable of operating at an ultra fast speed. SPICE simulation of the switch with the proposed circuit model provides bit error rate (BER) values at the switch output which agrees well with the experimentally measured values at 10 Gb/s. The degradation of switching performance has been examined in terms of bit error rate, modulation bandwidth and switching time in the presence of chip parasitic elements of SOA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes P.A., Paoli T.L.: Derivative measurements of the current-voltage characteristics of double-heterostructure injection lasers. IEEE J. Quantum Electron. 12(10), 633–639 (1976)

    Article  ADS  Google Scholar 

  • Berrettini, G., Lauri, E., Ghelfi, P., Bogoni, A., Potì, L., : Ultra-fast integrable 2 × 2 All-Optical switch for optical packet routing. Proc. of ECOC 2006, Ultra fast optical subsystems, Cannes, France, pp.426–450, Sept. 24–28 (2006)

  • Chu C.Y.J., Ghafouri-Shiraz H.: A simple method to determine carrier recombinations in a semiconductor laser optical amplifier. IEEE Photon. Tech. Lett. 5(10), 1182–1185 (1993)

    Article  ADS  Google Scholar 

  • Chu C.Y.J., Ghafouri-Shiraz H.: Analysis of gain and saturation characteristics of a semiconductor laser optical amplifier using transfer matrices. J. Lightwave Technol. 12(8), 1378–1386 (1994)

    Article  ADS  Google Scholar 

  • Das Barman A., Ipsita S., Basu P.K.: A simple spice model for traveling wave semiconductor laser amplifier. Microwave and Optical Technol. Lett. 49(7), 1558–1561 (2007)

    Article  Google Scholar 

  • Das Barman A., Scaffardi M., Debnath S., Poti L., Bogoni A.: Design tool and its experimental validation for SOA-based photonic signal processing. Optical Fiber Technol. 15(1), 39–49 (2009)

    Article  ADS  Google Scholar 

  • Ellis A.D., Kelly A.E., Nesset D., Pitcher D., Moodie D.G., Kashyap R.: Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2 mm long semiconductor amplifier. IET Electron. Lett. 34(20), 1958–1959 (1998)

    Article  Google Scholar 

  • Elrefaie A., Lin C.: Performance degradations of multigigabit-per-second NRZ/RZ lightwave systems due to gain saturation in traveling-wave semiconductor optical amplifiers. IEEE Photon. Tech. Lett. 1(10), 300–303 (1989)

    Article  ADS  Google Scholar 

  • Fujiwara M., Nishimoto H., Kajitani T., Itoh M., Suzuki S.: Studies on semiconductor optical amplifiers for line capacity expansion in photonic space-division switching system. IEEE J. Lightwave Tech. 9(2), 155–160 (1991)

    Article  ADS  Google Scholar 

  • Gallep C. M., Conforti E.: Reduction of semiconductor optical amplifier switching times by preimpulse step-injected current technique. IEEE Photon. Tech. Lett. 14(7), 902–904 (2002)

    Article  ADS  Google Scholar 

  • Harder C., Katz J., Margalit S., Shacham J., Yariv A.: Noise equivalent circuit of a semiconductor laser diode. IEEE J. Quantum Electron. 18(3), 333–337 (1982)

    Article  ADS  Google Scholar 

  • Jou J.-J., Liu C.-K., Lee S.-L.: A unified circuit model for static and dynamic analyses of semiconductor optical amplifiers and laser diodes. Solid-State Electron. 51, 360–365 (2007)

    Article  ADS  Google Scholar 

  • Katz J., Margalit S., Harder C., Wilt D., Yariv A.: The intrinsic electrical equivalent circuit of a laser diode. IEEE J. Quantum Electron. 17(1), 4–7 (1981)

    Article  ADS  Google Scholar 

  • Krahenbuhl R.: Performance and modeling of advanced Ti: LiNbO3 digital optical switches. IEEE J. Lightwave Tech. 20(1), 92–99 (2002)

    Article  ADS  Google Scholar 

  • Malacarnie A., Wang Z., Zhiang Y., Das Barman A., Berrettini G., Poti L., Bogoni A.: 20 pico second transition time all optical SOA based Flipflop used for photonic 10 Gbps switching performance without any bit loss. IEEE J. Sel. Topics QE. 14(3), 808–815 (2008)

    Article  Google Scholar 

  • Morito K.: Output-level control of semiconductor optical amplifier by external light injection. J. Lightwave Technol. 23(12), 4332–4341 (2005)

    Article  ADS  Google Scholar 

  • Mukai T., Yamamoto Y., Kimura T.: S/N and error rate performance in AlGaAs semiconductor laser preamplifier and linear repeater systems. IEEE Trans. Microwave Theo. Tech., MTT 30(10), 1548–1556 (1982)

    Article  ADS  Google Scholar 

  • Nishimoto H., Iwasaki M., Suzuki S., Kondo M.: Polarization independent 8x8 LiNbO3 matrix switch. IEEE Photon. Tech. Lett. 29(9), 634–636 (1990)

    Article  ADS  Google Scholar 

  • Okayama H., Matoba A., Shibuya R., Ishida T.: Optical switch matrix with simplified NxN tree structure. IEEE J. Lightwave Tech. 7(7), 1023–1128 (1989)

    Article  ADS  Google Scholar 

  • Ollier E.: Optical MEMS devices based on moving waveguides. IEEE J. Sel. Topics Quantum Electron. 8(1), 155–162 (2002)

    Article  Google Scholar 

  • Olsson N.A.: Lightwave systems with optical amplifiers. J. Lightwave Technol. 7(7), 1071–1082 (1989)

    Article  ADS  Google Scholar 

  • O’Mahony M.J.: Semiconductor laser optical amplifier for use in future fiber systems. J. Lightwave Technol. 6(4), 531–544 (1988)

    Article  ADS  Google Scholar 

  • Pleumeekers J.L., Kauer M., Dreyer K., Burrus C., Dentai A.G., Shunk S., Leuthold J., Joyner C.H.: Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength. IEEE Photon. Tech. Lett. 14(1), 12–14 (2002)

    Article  ADS  Google Scholar 

  • Saleh A.A.M.: Nonlinear models of traveling-wave optical amplifiers. IET Electron. lett. 24(14), 835–837 (1988)

    Article  ADS  Google Scholar 

  • Tapalian H.C., Laine J.P., Lane P.A.: Thermooptical switches using coated microsphere resonators. IEEE Photon. Tech. Lett. 14(8), 1118–1120 (2002)

    Article  ADS  Google Scholar 

  • Xiaohua, M., Kuo, G.-S.: Optical switching technology comparison: optical MEMS vs. other technologies. IEEE Optical Commun. 516–523, November (2003)

  • Wakita K.: Semiconductor Optical Modulator. Kluwer, Boston (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ipsita Sengupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengupta, I., Das Barman, A. & Basu, P.K. Circuit model for analysis of SOA-based photonic switch. Opt Quant Electron 41, 837–848 (2009). https://doi.org/10.1007/s11082-010-9398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-010-9398-7

Keywords

Navigation