Skip to main content
Log in

Global error bounds of one-stage extended RKN integrators for semilinear wave equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper analyzes global error bounds of one-stage explicit extended Runge–Kutta–Nyström integrators for semilinear wave equations. The analysis is presented by using spatial semidiscretizations with periodic boundary conditions. Optimal second-order convergence is proved without requiring Lipschitz continuous and higher regularity of the exact solution. Moreover, the error analysis is not restricted to the spectral semidiscretization in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bao, W., Dong, X.: Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime. Numer. Math. 120, 189–229 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brugnano, L., Frasca Caccia, G., Iavernaro, F.: Energy conservation issues in the numerical solution of the semilinear wave equation. Appl. Math. Comput. 270, 842–870 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Brugnano, L., Iavernaro, F.: Line Integral Methods for Conservative Problems. Chapman et hall/CRC, Boca Raton (2016)

    Book  MATH  Google Scholar 

  4. Butcher, J.C: Numerical Methods for Ordinary Differential Equations, Second Edition. Wiley, Chichester (2008)

    Book  MATH  Google Scholar 

  5. Cano, B.: Conservation of invariants by symmetric multistep cosine methods for second-order partial differential equations. BIT 53, 29–56 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cano, B., Moreta, M.J.: Multistep cosine methods for second-order partial differential systems. IMA J. Numer. Anal. 30, 431–461 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, D., Hairer, E., Lubich, C.: Conservation of energy, momentum and actions in numerical discretizations of nonlinear wave equations. Numer. Math. 110, 113–143 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dong, X.: Stability and convergence of trigonometric integrator pseudospectral discretization for N-coupled nonlinear Klein-Gordon equations. Appl. Math. Comput. 232, 752–765 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Faou, E.: Geometric Numerical Integration and Schrödinger Equations. Zurich Lectures Adv. Math. European Mathematical Society, Zürich (2012)

    Book  Google Scholar 

  10. García-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gauckler, L.: Error analysis of trigonometric integrators for semilinear wave equations. SIAM J. Numer. Anal. 53, 1082–1106 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gauckler, L.: Convergence of a split-step Hermite method for the Gross-Pitaevskii equation. IMA J. Numer. Anal. 31, 396–415 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gauckler, L., Lu, J., Marzuola, J.L., Rousset, F., Schratz, K.: Trigonometric integrators for quasilinear wave equations, Math. Comp. https://doi.org/10.1090/mcom/3339 (2018)

  14. Gauckler, L., Weiss, D.: Metastable energy strata in numerical discretizations of weakly nonlinear wave equations. Disc. Contin. Dyn. Syst. 37, 3721–3747 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grimm, V.: On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations. Numer. Math. 100, 71–89 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grimm, V.: On the use of the Gautschi-type exponential integrator for wave equations. In: Numerical Mathematics and Advanced Applications, pp 557–563. Springer, Berlin (2006)

  17. Grimm, V., Hochbruck, M.: Error analysis of exponential integrators for oscillatory second-order differential equations. J. Phys. A: Math. Gen. 39, 5495–5507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hairer, E., Lubich, C.: Spectral semi-discretisations of weakly nonlinear wave equations over long times. Found. Comput. Math. 8, 319–334 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  20. Hochbruck, M., Lubich, C.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hochbruck, M., Ostermann, A.: Explicit exponential Runge-Kutta methods for semilineal parabolic problems. SIAM J. Numer. Anal. 43, 1069–1090 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hochbruck, M., Ostermann, A., Schweitzer, J.: Exponential rosenbrock-type methods. SIAM J. Numer. Anal. 47, 786–803 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hochbruck, M., Pažur, T.: Error analysis of implicit Euler methods for quasilinear hyperbolic evolution equations. Numer. Math. 135, 547–569 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Holden, H., Lubich, C., Risebro, N.H.: Operator splitting for partial differential equations with Burgers nonlinearity. Math. Comp. 82, 173–185 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Iserles, A.: On the global error of discretization methods for highly-oscillatory ordinary differential equations. BIT 42, 561–599 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Koch, O., Lubich, C.: Variational-splitting time integration of the multi-configuration timedependent Hartree-Fock equations in electron dynamics. IMA J. Numer. Anal. 31, 379–395 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kovács, B., Lubich, C.: Stability and convergence of time discretizations of quasi-linear evolution equations of Kato type. Numer. Math. 138, 365–388 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Y.W., Wu, X.: Exponential integrators preserving first integrals or Lyapunov functions for conservative or dissipative systems. SIAM J. Sci. Comput. 38, 1876–1895 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, C., Iserles, A., Wu, X.: Symmetric and arbitrarily high-order Birkhoff–Hermite time integrators and their long-time behaviour for solving nonlinear Klein–Gordon equations. J. Comput. Phys. 356, 1–30 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, C., Wu, X.: Arbitrarily high-order time-stepping schemes based on the operator spectrum theory for high-dimensional nonlinear Klein–Gordon equations. J. Comput. Phys. 340, 243–275 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lubich, C.: On splitting methods for Schrödinger-poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141–2153 (2008)

    Article  MATH  Google Scholar 

  33. Mei, L., Liu, C., Wu, X.: An essential extension of the finite-energy condition for extended Runge–Kutta–Nyström integrators when applied to nonlinear wave equations. Comm. Comput. Phys. 22, 742–764 (2017)

    Article  Google Scholar 

  34. Thalhammer, M.: Convergence analysis of high-order time-splitting pseudospectral methods for nonlinear Schrödinger equations. SIAM J. Numer. Anal. 50, 3231–3258 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Verwer, J. G., Sanz-Serna, J. M.: Convergence of method of lines approximations to partial differential equations. Comput. 33, 297–313 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, B., Iserles, A., Wu, X.: Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found. Comput. Math. 16, 151–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, B., Wu, X., Meng, F.: Trigonometric collocation methods based on Lagrange basis polynomials for multi-frequency oscillatory second-order differential equations. J. Comput. Appl. Math. 313, 185–201 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, B., Yang, H., Meng, F.: Sixth order symplectic and symmetric explicit ERKN schemes for solving multi-frequency oscillatory nonlinear Hamiltonian equations. Calcolo 54, 117–140 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wu, X., You, X., Shi, W., Wang, B.: ERKN Integrators for systems of oscillatory second-order differential equations. Comput. Phys. Comm. 181, 1873–1887 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu, X., Wang, B.: Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer Nature Singapore Pte Ltd, Singapore (2018)

    Book  MATH  Google Scholar 

  41. Wu, X., You, X., Wang, B.: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors are sincerely thankful to two anonymous reviewers for their valuable comments.

Funding

The research is supported in part by the Alexander von Humboldt Foundation, by NSF of Shandong Province (Outstanding Youth Foundation, no. ZR2017JL003), and by NSFC (no.11671200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyuan Wu.

Additional information

Dedicated to John Butcher on the occasion of his 85th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Wu, X. Global error bounds of one-stage extended RKN integrators for semilinear wave equations. Numer Algor 81, 1203–1218 (2019). https://doi.org/10.1007/s11075-018-0585-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0585-0

Keywords

Mathematics Subject Classification (2010)

Navigation