Skip to main content
Log in

Vibration control combining nonlinear isolation and nonlinear absorption

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Quasi-zero stiffness system has been widely used to isolate structural vibrations. However, its small dynamic stiffness may result in drastic low-frequency vibration. This is a curse of employing quasi-zero stiffness systems in engineering. In this paper, a nonlinear energy sink (NES) is used to overcome this difficulty. In order to reduce the additional weight of the NES, the mass of the NES is replaced by an inerter. By superposing the quasi-zero stiffness system and the inertial NES together, a combined vibration control technique is proposed. The equations of the motion of the primary structure and the combined control system are established. The steady-state response of the system is solved by the harmonic balance method and verified numerically. The suppression performance is evaluated based on the resonance suppression efficiency and the effective vibration isolation bandwidth. In addition, the parameters of the inertial NES are optimized. The results show that the combined control system has a better vibration control effect than the quasi-zero stiffness isolator. Specifically, the combined control system provides a smaller resonance amplitude and a wider vibration isolation band. In summary, the combined control scheme has both effects of the nonlinear isolation and the nonlinear absorption. Therefore, this paper proposes a vibration control technique that can achieve a wide band of vibration isolation and small vibration amplitude with a very little additional mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Chen, L.Q., Li, X., Lu, Z.Q., Zhang, Y.W., Ding, H.: Dynamic effects of weights on vibration reduction by a nonlinear energy sink moving vertically. J. Sound Vib. 451, 99–119 (2019). https://doi.org/10.1016/j.jsv.2019.03.005

    Article  Google Scholar 

  2. AL-Shudeifat, M.A.: Nonlinear energy sinks with nontraditional kinds of nonlinear restoring forces. J. Vib. Acoust. 139, 1–5 (2017). https://doi.org/10.1115/1.4035479

    Article  Google Scholar 

  3. Zang, J., Zhang, Y.-W., Ding, H., Yang, T.-Z., Chen, L.-Q.: The evaluation of a nonlinear energy sink absorber based on the transmissibility. Mech. Syst. Signal Process. 125, 99–122 (2019). https://doi.org/10.1016/j.ymssp.2018.05.061

    Article  Google Scholar 

  4. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314, 371–452 (2008). https://doi.org/10.1016/j.jsv.2008.01.014

    Article  Google Scholar 

  5. Lu, Z.-Q., Chen, L.-Q.: Some recent progresses in nonlinear passive isolations of vibrations. Chin. J. Theor. Appl. Mech. 49, 550–564 (2017). https://doi.org/10.6052/0459-1879-17-064

    Article  Google Scholar 

  6. Lu, Z., Wang, Z., Zhou, Y., Lu, X.: Nonlinear dissipative devices in structural vibration control: a review. J. Sound Vib. 423, 18–49 (2018). https://doi.org/10.1016/j.jsv.2018.02.052

    Article  Google Scholar 

  7. Wang, X., Yao, H., Zheng, G.: Enhancing the isolation performance by a nonlinear secondary spring in the Zener model. Nonlinear Dyn. 87, 2483–2495 (2017). https://doi.org/10.1007/s11071-016-3205-3

    Article  Google Scholar 

  8. Yang, T., Cao, Q.: Delay-controlled primary and stochastic resonances of the SD oscillator with stiffness nonlinearities. Mech. Syst. Signal Process. 103, 216–235 (2018). https://doi.org/10.1016/J.YMSSP.2017.10.002

    Article  Google Scholar 

  9. Yan, L., Xuan, S., Gong, X.: Shock isolation performance of a geometric anti-spring isolator. J. Sound Vib. 413, 120–143 (2018). https://doi.org/10.1016/J.JSV.2017.10.024

    Article  Google Scholar 

  10. Lang, Z.Q., Jing, X.J., Billings, S.A., Tomlinson, G.R., Peng, Z.K.: Theoretical study of the effects of nonlinear viscous damping on vibration isolation of sdof systems. J. Sound Vib. 323, 352–365 (2009). https://doi.org/10.1016/j.jsv.2009.01.001

    Article  Google Scholar 

  11. Peng, Z.K., Lang, Z.Q., Jing, X.J., Billings, S.A., Tomlinson, G.R., Guo, L.Z.: The transmissibility of vibration isolators with a nonlinear antisymmetric damping characteristic. J. Vib. Acoust. 132 (2010). https://doi.org/10.1115/1.4000476

  12. Huang, X., Sun, J., Hua, H., Zhang, Z.: The isolation performance of vibration systems with general velocity-displacement-dependent nonlinear damping under base excitation: numerical and experimental study. Nonlinear Dyn. 85, 777–796 (2016). https://doi.org/10.1007/s11071-016-2722-4

    Article  MathSciNet  Google Scholar 

  13. Feng, X., Jing, X.: Human body inspired vibration isolation: beneficial nonlinear stiffness, nonlinear damping & nonlinear inertia. Mech. Syst. Signal Process. 117, 786–812 (2019). https://doi.org/10.1016/j.ymssp.2018.08.040

    Article  Google Scholar 

  14. Ahmed, S., Wang, H., Aslam, M.S., Ghous, I., Qaisar, I.: Robust adaptive control of robotic manipulator with input time-varying delay. Int. J. Control. Autom. Syst. 17, 2193–2202 (2019). https://doi.org/10.1007/s12555-018-0767-5

    Article  Google Scholar 

  15. Aslam, M.S., Qaisar, I., Saleem, M.A.: Quantized event-triggered feedback control under fuzzy system with time-varying delay and actuator fault. Nonlinear Anal. Hybrid Syst. 35, 100823 (2020). https://doi.org/10.1016/j.nahs.2019.100823

    Article  MathSciNet  MATH  Google Scholar 

  16. Tang, B., Brennan, M.J.: On the shock performance of a nonlinear vibration isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 81, 207–214 (2014). https://doi.org/10.1016/j.ijmecsci.2014.02.019

    Article  Google Scholar 

  17. Carrella, A., Brennan, M.J., Waters, T.P., Lopes, V.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55, 22–29 (2012). https://doi.org/10.1016/j.ijmecsci.2011.11.012

    Article  Google Scholar 

  18. Ahn, H.-J.: Performance limit of a passive vertical isolator using a negative stiffness mechanism. J. Mech. Sci. Technol. 22, 2357 (2008). https://doi.org/10.1007/s12206-008-0930-7

    Article  Google Scholar 

  19. Lan, C.-C., Yang, S.-A., Wu, Y.-S.: Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads. J. Sound Vib. 333, 4843–4858 (2014). https://doi.org/10.1016/j.jsv.2014.05.009

    Article  Google Scholar 

  20. Carrella, A., Brennan, M.J., Kovacic, I., Waters, T.P.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322, 707–717 (2009). https://doi.org/10.1016/j.jsv.2008.11.034

    Article  Google Scholar 

  21. Lu, Z., Brennan, M.J., Chen, L.-Q.: On the transmissibilities of nonlinear vibration isolation system. J. Sound Vib. 375, 28–37 (2016). https://doi.org/10.1016/j.jsv.2016.04.032

    Article  Google Scholar 

  22. Ding, H., Ji, J., Chen, L.Q.: Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mech. Syst. Signal Process. 121, 675–688 (2019). https://doi.org/10.1016/j.ymssp.2018.11.057

    Article  Google Scholar 

  23. Fulcher, B.A., Shahan, D.W., Haberman, M.R., Conner Seepersad, C., Wilson, P.S.: Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. J. Vib. Acoust. 136, 031009 (2014). https://doi.org/10.1115/1.4026888

    Article  Google Scholar 

  24. Huang, X., Liu, X., Sun, J., Zhang, Z., Hua, H.: Vibration isolation characteristics of a nonlinear isolator using euler buckled beam as negative stiffness corrector: a theoretical and experimental study. J. Sound Vib. 333, 1132–1148 (2014). https://doi.org/10.1016/J.JSV.2013.10.026

    Article  Google Scholar 

  25. Huang, X., Chen, Y., Hua, H., Liu, X., Zhang, Z.: Shock isolation performance of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: theoretical and experimental study. J. Sound Vib. 345, 178–196 (2015). https://doi.org/10.1016/j.jsv.2015.02.001

    Article  Google Scholar 

  26. Sun, X., Jing, X., Xu, J., Cheng, L.: Vibration isolation via a scissor-like structured platform. J. Sound Vib. 333, 2404–2420 (2014). https://doi.org/10.1016/J.JSV.2013.12.025

    Article  Google Scholar 

  27. Zhang, W., Zhao, J.: Analysis on nonlinear stiffness and vibration isolation performance of scissor-like structure with full types. Nonlinear Dyn. 86, 17–36 (2016). https://doi.org/10.1007/s11071-016-2869-z

    Article  Google Scholar 

  28. Wang, Y., Jing, X.: Nonlinear stiffness and dynamical response characteristics of an asymmetric X-shaped structure. Mech. Syst. Signal Process. 125, 142–169 (2019). https://doi.org/10.1016/j.ymssp.2018.03.045

    Article  Google Scholar 

  29. Bian, J., Jing, X.: Nonlinear passive damping of the X-shaped structure. Procedia Eng. 199, 1701–1706 (2017). https://doi.org/10.1016/j.proeng.2017.09.372

    Article  Google Scholar 

  30. Jing, X., Zhang, L., Feng, X., Sun, B., Li, Q.: A novel bio-inspired anti-vibration structure for operating hand-held jackhammers. Mech. Syst. Signal Process. 118, 317–339 (2019). https://doi.org/10.1016/j.ymssp.2018.09.004

    Article  Google Scholar 

  31. Zheng, Y., Zhang, X., Luo, Y., Zhang, Y., Xie, S.: Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness. Mech. Syst. Signal Process. 100, 135–151 (2018). https://doi.org/10.1016/J.YMSSP.2017.07.028

    Article  Google Scholar 

  32. Zhou, J., Wang, K., Xu, D., Ouyang, H., Li, Y.: A six degrees-of-freedom vibration isolation platform supported by a hexapod of quasi-zero-stiffness struts. J. Vib. Acoust. 139 (2017). https://doi.org/10.1115/1.4035715

  33. Ishida, S., Suzuki, K., Shimosaka, H.: Design and experimental analysis of origami-inspired vibration isolator with quasi-zero-stiffness characteristic. J. Vib. Acoust. 139, 051004 (2017). https://doi.org/10.1115/1.4036465

    Article  Google Scholar 

  34. Zheng, Y., Li, Q., Yan, B., Luo, Y., Zhang, X.: A Stewart isolator with high-static-low-dynamic stiffness struts based on negative stiffness magnetic springs. J. Sound Vib. 422, 390–408 (2018). https://doi.org/10.1016/j.jsv.2018.02.046

    Article  Google Scholar 

  35. Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust. 123, 324 (2001). https://doi.org/10.1115/1.1368883

    Article  Google Scholar 

  36. Gendelman, O.V., Sapsis, T., Vakakis, A.F., Bergman, L.A.: Enhanced passive targeted energy transfer in strongly nonlinear mechanical oscillators. J. Sound Vib. 330, 1–8 (2011). https://doi.org/10.1016/j.jsv.2010.08.014

    Article  Google Scholar 

  37. Gourc, E., Michon, G., Seguy, S., Berlioz, A.: Targeted energy transfer under harmonic forcing with a vibro-impact nonlinear energy sink: analytical and experimental developments. J. Vib. Acoust. 137 (2015). https://doi.org/10.1115/1.4029285

  38. Qiu, D., Li, T., Seguy, S., Paredes, M.: Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design. Nonlinear Dyn. 92, 443–461 (2018). https://doi.org/10.1007/s11071-018-4067-7

    Article  Google Scholar 

  39. Zang, J., Yuan, T.C., Lu, Z.Q., Zhang, Y.W., Ding, H., Chen, L.Q.: A lever-type nonlinear energy sink. J. Sound Vib. 437, 119–134 (2018). https://doi.org/10.1016/j.jsv.2018.08.058

    Article  Google Scholar 

  40. Zhang, Y.-W., Lu, Y.-N., Zhang, W., Teng, Y.-Y., Yang, H.-X., Yang, T.-Z., Chen, L.-Q.: Nonlinear energy sink with inerter. Mech. Syst. Signal Process. 125, 52–64 (2019). https://doi.org/10.1016/j.ymssp.2018.08.026

    Article  Google Scholar 

  41. Yang, T.-Z., Yang, X.-D., Li, Y., Fang, B.: Passive and adaptive vibration suppression of pipes conveying fluid with variable velocity. J. Vib. Control. 20, 1293–1300 (2014). https://doi.org/10.1177/1077546313480547

    Article  MathSciNet  Google Scholar 

  42. Zang, J., Chen, L.Q.: Complex dynamics of a harmonically excited structure coupled with a nonlinear energy sink. Acta Mech. Sin. Xuebao 33, 801–822 (2017). https://doi.org/10.1007/s10409-017-0671-x

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, Y.-W., Yuan, B., Fang, B., Chen, L.-Q.: Reducing thermal shock-induced vibration of an axially moving beam via a nonlinear energy sink. Nonlinear Dyn. 87, 1159–1167 (2017). https://doi.org/10.1007/s11071-016-3107-4

    Article  Google Scholar 

  44. Lee, Y.S., Vakakis, A.F., Bergman, L.A., Michael McFarland, D.: Suppression of limit cycle oscillations in the van der Pol oscillator by means of passive non-linear energy sinks. Struct. Control Heal. Monit. 13, 41–75 (2006). https://doi.org/10.1002/stc.143

    Article  Google Scholar 

  45. Fang, Z.W., Zhang, Y.W., Li, X., Ding, H., Chen, L.Q.: Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester. J. Sound Vib. 391, 35–49 (2017). https://doi.org/10.1016/j.jsv.2016.12.019

    Article  Google Scholar 

  46. Li, X., Zhang, Y., Ding, H., Chen, L.: Integration of a nonlinear energy sink and a piezoelectric energy harvester. Appl. Math. Mech. (English Ed.) 38, 1019–1030 (2017). https://doi.org/10.1007/s10483-017-2220-6

    Article  MathSciNet  Google Scholar 

  47. Xiong, L., Tang, L., Liu, K., Mace, B.R.: Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink. J. Phys. D. Appl. Phys. 51, 185502 (2018). https://doi.org/10.1088/1361-6463/aab9e3

    Article  Google Scholar 

  48. Viguié, R., Kerschen, G., Golinval, J.C., McFarland, D.M., Bergman, L.A., Vakakis, A.F., van de Wouw, N.: Using passive nonlinear targeted energy transfer to stabilize drill-string systems. Mech. Syst. Signal Process. 23, 148–169 (2009). https://doi.org/10.1016/j.ymssp.2007.07.001

    Article  Google Scholar 

  49. Zhang, Y.-W., Zhang, Z., Chen, L.-Q., Yang, T.-Z., Fang, B., Zang, J.: Impulse-induced vibration suppression of an axially moving beam with parallel nonlinear energy sinks. Nonlinear Dyn. 82, 61–71 (2015). https://doi.org/10.1007/s11071-015-2138-6

    Article  MathSciNet  Google Scholar 

  50. Wierschem, N.E., Quinn, D.D., Hubbard, S.A., Al-Shudeifat, M.A., McFarland, D.M., Luo, J., Fahnestock, L.A., Spencer, B.F., Vakakis, A.F., Bergman, L.A.: Passive damping enhancement of a two-degree-of-freedom system through a strongly nonlinear two-degree-of-freedom attachment. J. Sound Vib. 331, 5393–5407 (2012). https://doi.org/10.1016/j.jsv.2012.06.023

    Article  Google Scholar 

  51. Wang, J., Wierschem, N.E., Spencer, B.F., Lu, X.: Track nonlinear energy sink for rapid response reduction in building structures. J. Eng. Mech. 141, 04014104 (2015). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000824

    Article  Google Scholar 

  52. Lu, X., Liu, Z., Lu, Z.: Optimization design and experimental verification of track nonlinear energy sink for vibration control under seismic excitation. Struct. Control Heal. Monit. 24, e2033 (2017). https://doi.org/10.1002/stc.2033

    Article  Google Scholar 

  53. Lo Feudo, S., Touzé, C., Boisson, J., Cumunel, G.: Nonlinear magnetic vibration absorber for passive control of a multi-storey structure. J. Sound Vib. 438, 33–53 (2019). https://doi.org/10.1016/j.jsv.2018.09.007

    Article  Google Scholar 

  54. Bergeot, B., Bellizzi, S., Cochelin, B.: Passive suppression of helicopter ground resonance using nonlinear energy sinks attached on the helicopter blades. J. Sound Vib. 392, 41–55 (2017). https://doi.org/10.1016/j.jsv.2016.12.039

    Article  Google Scholar 

  55. Mao, X.-Y., Ding, H., Chen, L.-Q.: Nonlinear torsional vibration absorber for flexible structures. J. Appl. Mech. 86, 021006 (2018). https://doi.org/10.1115/1.4042045

    Article  Google Scholar 

  56. Yang, K., Zhang, Y.-W., Ding, H., Yang, T.-Z., Li, Y., Chen, L.-Q.: Nonlinear energy sink for whole-spacecraft vibration reduction. J. Vib. Acoust. 139, 021011 (2017). https://doi.org/10.1115/1.4035377

    Article  Google Scholar 

  57. Gourc, E., Seguy, S., Michon, G., Berlioz, A.: Chatter control in turning process with a nonlinear energy sink. Adv. Mater. Res. 698, 89–98 (2013). https://doi.org/10.4028/www.scientific.net/AMR.698.89

    Article  Google Scholar 

  58. Gourc, E., Seguy, S., Michon, G., Berlioz, A., Mann, B.P.: Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink. J. Sound Vib. 355, 392–406 (2015). https://doi.org/10.1016/j.jsv.2015.06.025

    Article  Google Scholar 

  59. Bab, S., Khadem, S.E., Shahgholi, M., Abbasi, A.: Vibration attenuation of a continuous rotor-blisk-journal bearing system employing smooth nonlinear energy sinks. Mech. Syst. Signal Process. 84, 128–157 (2017). https://doi.org/10.1016/j.ymssp.2016.07.002

    Article  Google Scholar 

  60. Zhang, Z., Lu, Z.Q., Ding, H., Chen, L.Q.: An inertial nonlinear energy sink. J. Sound Vib. 450, 199–213 (2019). https://doi.org/10.1016/j.jsv.2019.03.014

    Article  Google Scholar 

  61. Smith, M.C.: Synthesis of mechanical networks: the inerter. IEEE Trans. Autom. Control 47, 1648–1662 (2002). https://doi.org/10.1109/TAC.2002.803532

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No.11772181, 11422214, 11902203), the Program of Shanghai Municipal Education Commission (No. 17SG38, 2019-01-07-00-09-E00018), the Key Research Projects of Shanghai Science and Technology Commission (No. 18010500100), and the Liaoning Revitalization Talents Program (No. XLYC1807172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye-Wei Zhang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhang, YW. & Ding, H. Vibration control combining nonlinear isolation and nonlinear absorption. Nonlinear Dyn 100, 2121–2139 (2020). https://doi.org/10.1007/s11071-020-05606-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05606-6

Keywords

Navigation