Skip to main content
Log in

A comment on some new definitions of fractional derivative

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

After reviewing the definition of two differential operators which have been recently introduced by Caputo and Fabrizio and, separately, by Atangana and Baleanu, we present an argument for which these two integro-differential operators can be understood as simple realizations of a much broader class of fractional operators, i.e. the theory of Prabhakar fractional integrals. Furthermore, we also provide a series expansion of the Prabhakar integral in terms of Riemann–Liouville integrals of variable order. Then, by using this last result we finally argue that the operator introduced by Caputo and Fabrizio cannot be regarded as fractional. Besides, we also observe that the one suggested by Atangana and Baleanu is indeed fractional, but it is ultimately related to the ordinary Riemann–Liouville and Caputo fractional operators. All these statements are then further supported by a precise analysis of differential equations involving the aforementioned operators. To further strengthen our narrative, we also show that these new operators do not add any new insight to the linear theory of viscoelasticity when employed in the constitutive equation of the Scott–Blair model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015). https://doi.org/10.12785/pfda/010201

    Google Scholar 

  2. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag–Leffler Functions, Related Topics and Applications. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  3. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016). https://doi.org/10.2298/TSCI160111018A

    Article  Google Scholar 

  4. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York (1997)

    Google Scholar 

  5. Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York (1997)

    Google Scholar 

  6. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  7. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications, vol. 44. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  8. Garra, R., Gorenflo, R., Polito, F., Tomovski, Z.: Hilfer–Prabhakar derivatives and some applications. Appl. Math. Comput. 242, 576–589 (2014). https://doi.org/10.1016/j.amc.2014.05.129

    MathSciNet  MATH  Google Scholar 

  9. Garra, R., Garrappa, R.: The Prabhakar or three parameter Mittag–Leffler function: theory and application. Commun. Nonlinear Sci. Numer. Simul. 56, 314–329 (2018). https://doi.org/10.1016/j.cnsns.2017.08.018

    Article  MathSciNet  Google Scholar 

  10. Garrappa, R.: Grünwald–Letnikov operators for fractional relaxation in Havriliak–Negami models. Commun. Nonlinear Sci. Numer. Simul. 38, 178–191 (2016). https://doi.org/10.1016/j.cnsns.2016.02.015

    Article  MathSciNet  Google Scholar 

  11. Garrappa, R., Mainardi, F., Maione, G.: Models of dielectric relaxation based on completely monotone functions. Fract. Calc. Appl. Anal. 19, 1105–1160 (2016). https://doi.org/10.1515/fca-2016-0060

    Article  MathSciNet  MATH  Google Scholar 

  12. Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag–Leffler functions and their applications. J. Appl. Math. 2011, Article ID 298628 (2011). https://doi.org/10.1155/2011/298628

  13. Kilbas, A., Saigo, M., Saxena, R.: Generalized Mittag–Leffler function and generalized fractional calculus operators. Integr. Transforms Spec. Funct. 15, 31–49 (2004). https://doi.org/10.1080/10652460310001600717

    Article  MathSciNet  MATH  Google Scholar 

  14. Mainardi, F., Garrappa, R.: On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics. J. Comput. Phys. 293, 70–80 (2015). https://doi.org/10.1016/j.jcp.2014.08.006

    Article  MathSciNet  MATH  Google Scholar 

  15. Polito, F., Tomovski, Z.: Some properties of Prabhakar-type fractional calculus operators. Fract. Differ. Calc. 6(1), 73–94 (2016). https://doi.org/10.7153/fdc-06-05

    Article  MathSciNet  Google Scholar 

  16. Srivastava, H.M., Tomovski, Z.: Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel. Appl. Math. Comput. 211(1), 198–210 (2009). https://doi.org/10.1016/j.amc.2009.01.055

    MathSciNet  MATH  Google Scholar 

  17. Giusti, A., Colombaro, I.: Prabhakar-like fractional viscoelasticity. Commun. Nonlinear Sci. Numer. Simul. 56, 138–143 (2018). https://doi.org/10.1016/j.cnsns.2017.08.002

    Article  MathSciNet  Google Scholar 

  18. Ortigueira, M.D., Tenreiro, Machado J.: What is a fractional derivative? J. Comput. Phys. 293, 4–13 (2015). https://doi.org/10.1016/j.jcp.2014.07.019

    Article  MathSciNet  MATH  Google Scholar 

  19. Prabhakar, T.R.: A singular integral equation with a generalized Mittag–Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  20. Colombaro, I., Giusti, A., Vitali, S.: Storage and dissipation of energy in Prabhakar viscoelasticity. Mathematics 6(2), 15 (2018). https://doi.org/10.3390/math6020015

    Article  Google Scholar 

  21. Mainardi, F., Spada, G.: Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J. Spec. Topics 193, 133–160 (2011). https://doi.org/10.1140/epjst/e2011-01387-1

    Article  Google Scholar 

  22. Giusti, A.: On infinite order differential operators in fractional viscoelasticity. Fract. Calc. Appl. Anal. 20(4), 854–867 (2017). https://doi.org/10.1515/fca-2017-0045

    Article  MathSciNet  MATH  Google Scholar 

  23. Ortigueira, M.D., Tenreiro, Machado J.: A critical analysis of the Caputo–Fabrizio operator. Commun. Nonlinear Sci. Numer. Simul. 59, 608–611 (2018). https://doi.org/10.1016/j.cnsns.2017.12.001

    Article  MathSciNet  Google Scholar 

  24. Tarasov, V.E.: No nonlocality. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 62, 157–163 (2018). https://doi.org/10.1016/j.cnsns.2018.02.019

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of the authors has been carried out in the framework of the activities of the National Group of Mathematical Physics (GNFM, INdAM). Moreover, the work of A.G. has been partially supported by GNFM/INdAM Young Researchers Project 2017 “Analysis of Complex Biological Systems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Giusti.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest concerning the publication of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giusti, A. A comment on some new definitions of fractional derivative. Nonlinear Dyn 93, 1757–1763 (2018). https://doi.org/10.1007/s11071-018-4289-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4289-8

Keywords

Navigation