Skip to main content
Log in

Online identification of large-scale chaotic system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The ensemble prediction system (EPS) is an approach employed in meteorology to estimate forecast uncertainty of dynamical systems. In EPS, an ensemble of auxiliary simulations is launched along with the main prediction. Recently, an application with the EPS framework was proposed as a method that enables algorithmic tuning of parameters of large-scale models, in cases where high-CPU demands make usual iterative optimization impractical. The approach was aimed and tested for operational numerical weather prediction models, with a relatively small number of parameters and well-tuned initial values. Here, we present a new version of the approach as a general-purpose parameter estimation method for situations where effective parallel computing is available, but high-CPU requirements exclude the use of standard sequential approaches. We treat the problem as a stochastic optimization task and employ an evolutionary approach, the differential evolution as the optimizer. We demonstrate improved convergence properties, especially for strongly biased initial values or higher number of parameters. For parametric uncertainty quantification, the approach can be considered as a heuristic sampler of the parameter distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bengtsson, L., Ghil, M., Källén, E.: Dynamic Meteorology: Data Assimilation Methods, vol. 36. Springer, Berlin (1981). https://doi.org/10.1007/978-1-4612-5970-1

    Book  MATH  Google Scholar 

  2. Chakraborty, U.K.: Advances in Differential Evolution, vol. 143. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-68830-3

    Book  MATH  Google Scholar 

  3. Chen, N., Majda, A.J.: Filtering nonlinear turbulent dynamical systems through conditional gaussian statistics. Mon. Weather Rev. 144(12), 4885–4917 (2016). https://doi.org/10.1175/MWR-D-15-0437.1

    Article  Google Scholar 

  4. Feoktistov, V.: Differential Evolution. In Search of Solutions. Springer, Berlin (2006)

    MATH  Google Scholar 

  5. Haario, H., Kalachev, L., Hakkarainen, J.: Generalized correlation integral vectors: a distance concept for chaotic dynamical systems. Chaos Interdiscip. J. Nonlinear Sci. 25(6), 063,102 (2015). https://doi.org/10.1063/1.4921939

    Article  MathSciNet  Google Scholar 

  6. Haario, H., Saksman, E., Tamminen, J.: Adaptive proposal distribution for random walk Metropolis algorithm. Comput. Stat. 14(3), 375 (1999). https://doi.org/10.1007/s001800050022

    Article  MATH  Google Scholar 

  7. Haario, H., Saksman, E., Tamminen, J.: An adaptive metropolis algorithm. Bernoulli 7(2), 223 (2001). https://doi.org/10.2307/3318737

    Article  MathSciNet  MATH  Google Scholar 

  8. Ho, W.H., Chou, J.H., Guo, C.Y.: Parameter identification of chaotic systems using improved differential evolution algorithm. Nonlinear Dyn. 61(1), 29–41 (2010). https://doi.org/10.1007/s11071-009-9629-2

    Article  MathSciNet  MATH  Google Scholar 

  9. Järvinen, H., Laine, M., Solonen, A., Haario, H.: Ensemble prediction and parameter estimation system: the concept. Q. J. R. Meteorol. Soc. 138(663), 281–288 (2012). https://doi.org/10.1002/qj.923

    Article  Google Scholar 

  10. Lahoz, W., Khattatov, B., Ménard, R.: Data Assimilation: Making Sense of Observations. Springer, Berlin (2010). https://doi.org/10.1007/978-3-540-74703-1

    Book  MATH  Google Scholar 

  11. Laine, M., Solonen, A., Haario, H., Järvinen, H.: Ensemble prediction and parameter estimation system: the method. Q. J. R. Meteorol. Soc. 138(663), 289–297 (2012). https://doi.org/10.1002/qj.922

    Article  Google Scholar 

  12. Li, X., Yin, M.: Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dyn. 77(1), 61–71 (2014). https://doi.org/10.1007/s11071-014-1273-9

    Article  MathSciNet  Google Scholar 

  13. Lorenz, E.N.: Predictability: a problem partly solved. Predict. Weather Clim. (1996). https://doi.org/10.1017/CBO9780511617652.004

    Google Scholar 

  14. Ollinaho, P., Bechtold, P., Leutbecher, M., Laine, M., Solonen, A., Haario, H., Järvinen, H.: Parameter variations in prediction skill optimization at ECMWF. Nonlinear Process. Geophys. 20(6), 1001–1010 (2013). https://doi.org/10.5194/npg-20-1001-2013

    Article  Google Scholar 

  15. Ollinaho, P., Järvinen, H., Bauer, P., Laine, M., Bechtold, P., Susiluoto, J., Haario, H.: Optimization of NWP model closure parameters using total energy norm of forecast error as a target. Geosci. Model Dev. 7(5), 1889–1900 (2014). https://doi.org/10.5194/gmd-7-1889-2014

    Article  Google Scholar 

  16. Ollinaho, P., Laine, M., Solonen, A., Haario, H., Järvinen, H.: NWP model forecast skill optimization via closure parameter variations. Q. J. R. Meteorol. Soc. 139(675), 1520–1532 (2013). https://doi.org/10.1002/qj.2044

    Article  Google Scholar 

  17. Peng, B., Liu, B., Zhang, F.Y., Wang, L.: Differential evolution algorithm-based parameter estimation for chaotic systems. Chaos Solitons Fractals 39(5), 2110–2118 (2009). https://doi.org/10.1016/j.chaos.2007.06.084

    Article  Google Scholar 

  18. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization, vol. 28. Springer, Berlin (2005). https://doi.org/10.1007/3-540-31306-0

    MATH  Google Scholar 

  19. Qing, A.: Differential Evolution: Fundamentals and Applications in Electrical Engineering. Wiley, New York (2009). https://doi.org/10.1002/9780470823941

    Book  Google Scholar 

  20. Storn, R., Price, K.: Differential evolution : a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  21. Tremolet, Y.: Accounting for an imperfect model in 4D-Var. Q. J. R. Meteorol. Soc. 132(621), 2483–2504 (2006). https://doi.org/10.1256/qj.05.224

    Article  Google Scholar 

  22. Zupanski, D.: A general weak constraint applicable to operational 4D-var data assimilation systems. Mon. Weather Rev. 125(9), 2274–2292 (1997). https://doi.org/10.1175/1520-0493(1997)125<2274:AGWCAT>2.0.CO;2

Download references

Acknowledgements

The research has been supported by the Finnish Academy Project 134937 and the Centre of Excellence in Inverse Problems Research (Project Number 250 215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Shemyakin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shemyakin, V., Haario, H. Online identification of large-scale chaotic system. Nonlinear Dyn 93, 961–975 (2018). https://doi.org/10.1007/s11071-018-4239-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4239-5

Keywords

Navigation