Skip to main content
Log in

Fast and efficient randomized encryption scheme for digital images based on Quadtree decomposition and reversible memory cellular automata

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In recent years, the efficiency of cellular automata-based image cryptosystems has drawn a great interest to deal with the problematic of fast and highly secure image encryption. In this paper, we present a novel image encryption scheme that combines image’s quadtree decomposition approach with reversible memory cellular automata mechanism. The proposed scheme provides high sensitivity to plain image, key bit alteration besides its competitive speed performance. With respect to exiting schemes, the proposed one permits to reach high sensitivity degrees without the need for multiple confusion/diffusion rounds. Additionally, the scheme is extended to handle randomized encryption mode, so becomes secure against chosen-plaintext attacks. Experimental tests and extensive security analysis have been performed to demonstrate security and time efficiency of the proposed scheme, and show its suitability for designing real-time and secure image’s cryptosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Howard, Ralph: Data encryption standard. Inf. Age 9(4), 204–210 (1987)

    Google Scholar 

  2. Lai, X., Massey, J.L.: A proposal for a new block encryption standard. In: Damgård, I. B. (ed.) Advances in Cryptology—EUROCRYPT’90, pp. 389–404. Springer, Berlin (1991)

  3. Daemen, Joan, Rijmen, Vincent: The Design of Rijndael: AES-The Advanced Encryption Standard. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  4. Suk, Tomáš, Höschl, Cyril, Flusser, Jan: Decomposition of binary images–a survey and comparison. Pattern Recognit. 45(12), 4279–4291 (2012)

    Article  Google Scholar 

  5. Chang, Ji-Ying, Chang, Ruey-Feng, Kuo, Wen-Jia: Edge-based motion compensated classified DCT with quadtree for image sequence coding. Signal Process. Image Commun. 11(3), 187–197 (1998)

    Article  Google Scholar 

  6. Tseng, S.-Y., Yang, Z.-Y., Huang, W.-H., et al.: Object feature extraction for image retrieval based on quadtree segmented blocks. In: 2009 WRI World Congress on Computer Science and Information Engineering, pp. 401–405. IEEE (2009)

  7. Salari, E., Li, W.: A fast quadtree motion segmentation for image sequence coding. Signal Process. Image Commun. 14(10), 811–816 (1999)

    Article  Google Scholar 

  8. Tomassini, M., Perrenoud, M.: Nonuniform cellular automata for cryptography. Complex Syst. 12(1), 71–82 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Guo, J.-I., et al.: A new chaotic key-based design for image encryption and decryption. In: Proceedings of Circuits and Systems, 2000. The 2000 IEEE International Symposium on ISCAS 2000 Geneva, pp. 49–52. IEEE (2000)

  10. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08), 2129–2151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zanin, M., Pisarchik, A.N.: Gray code permutation algorithm for high-dimensional data encryption. Inf. Sci. 270, 288–297 (2014)

    Article  Google Scholar 

  12. Wang, Y., Wong, K.-W., Liao, X., et al.: A new chaos-based fast image encryption algorithm. Appl. Soft Comput. 11(1), 514–522 (2011)

    Article  Google Scholar 

  13. Zhu, Z., Zhang, W., Wong, K., et al.: A chaos-based symmetric image encryption scheme using a bit-level permutation. Inf. Sci. 181(6), 1171–1186 (2011)

    Article  Google Scholar 

  14. Zhang, W., Wong, K., Yu, H., et al.: A symmetric color image encryption algorithm using the intrinsic features of bit distributions. Commun. Nonlinear Sci. Numer. Simul. 18(3), 584–600 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, J., Zhu, Z., Yu, H.: A fast chaos-based symmetric image cryptosystem with an improved diffusion scheme. Opt. Int. J. Light Electron Opt. 125(11), 2472–2478 (2014)

    Article  Google Scholar 

  16. Fu, C., Chen, J., Zou, H., et al.: A chaos-based digital image encryption scheme with an improved diffusion strategy. Opt. Express 20(3), 2363–2378 (2012)

    Article  Google Scholar 

  17. Behnia, S., Akhshani, A., Mahmodi, H., et al.: A novel algorithm for image encryption based on mixture of chaotic maps. Chaos Solitons Fractals 35(2), 408–419 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Enayatifar, R., Abdullah, A.H., Isnin, I.F.: Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence. Opt. Lasers Eng. 56, 83–93 (2014)

    Article  Google Scholar 

  19. Bakhshandeh, A., Eslami, Z.: An authenticated image encryption scheme based on chaotic maps and memory cellular automata. Opt. Lasers Eng. 51(6), 665–673 (2013)

    Article  Google Scholar 

  20. Von Neumann, J., Burks, A.W., et al.: Theory of self-reproducing automata. IEEE Trans. Neural Netw. 5(1), 3–14 (1966)

    Google Scholar 

  21. Chatzichristofis, S.A., Mitzias, D.A., Sirakoulis, G.C., et al.: A novel cellular automata based technique for visual multimedia content encryption. Opt. Commun. 283(21), 4250–4260 (2010)

    Article  Google Scholar 

  22. Abdo, A.A., Lian, S., Ismail, I.A., et al.: A cryptosystem based on elementary cellular automata. Commun. Nonlinear Sci. Numer. Simul. 18(1), 136–147 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jin, J.: An image encryption based on elementary cellular automata. Opt. Lasers Eng. 50(12), 1836–1843 (2012)

    Article  Google Scholar 

  24. Alexopoulos, C., Bourbakis, N.G., Ioannou, N.: Image encryption method using a class of fractals. J. Electron. Imaging 4(3), 251–259 (1995)

    Article  Google Scholar 

  25. Maniccam, S.S., Burbakis, N.G.: Image and video encryption using SCAN patterns. Pattern Recognit. 37(4), 725–737 (2004)

    Article  Google Scholar 

  26. Chen, R.-J., Lai, J.-L.: Image security system using recursive cellular automata substitution. Pattern Recognit. 40(5), 1621–1631 (2007)

    Article  MATH  Google Scholar 

  27. Tomassini, M., Perrenoud, M.: Stream cyphers with one-and two-dimensional cellular automata. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature PPSN VI, pp. 722–731. Springer, Berlin (2000)

  28. Tomassini, M., Sipper, M., Zolla, M., et al.: Generating high-quality random numbers in parallel by cellular automata. Future Gener. Comput. Syst. 16(2), 291–305 (1999)

    Article  Google Scholar 

  29. Xuelong, Z., Qianmu, L., Manwu, X., et al.: A symmetric cryptography based on extended cellular automata. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, pp. 499–503. IEEE (2005)

  30. Wolfram, S.: A New Kind of Science. Wolfram media, Champaign (2002)

    MATH  Google Scholar 

  31. Alonso-Sanz, R.: One-dimensional r=2 cellular automata with memory. Int. J. Bifurc. Chaos 14(09), 3217–3248 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  33. Wu, Y., Zhou, Y., Saveriades, G., et al.: Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci. 222, 323–342 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liao, X., Lai, S., Zhou, Q.: A novel image encryption algorithm based on self-adaptive wave transmission. Signal Process. 90(9), 2714–2722 (2010)

    Article  MATH  Google Scholar 

  35. Wu, Y., Yang, G., Jin, H., et al.: Image encryption using the two-dimensional logistic chaotic map. J. Electron. Imaging 21(1), 013014-1–013014-15 (2012)

    Article  Google Scholar 

  36. Zhou, Yicong, Bao, Long, Chen, C.L.Philip: A new 1D chaotic system for image encryption. Signal Process. 97, 172–182 (2014)

    Article  Google Scholar 

  37. Kanso, A., Ghebleh, M.: A novel image encryption algorithm based on a 3D chaotic map. Commun. Nonlinear Sci. Numer. Simul. 17(7), 2943–2959 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mohamed, F.K.: A parallel block-based encryption schema for digital images using reversible cellular automata. Eng. Sci. Technol. Int. J. 17(2), 85–94 (2014)

    Article  MathSciNet  Google Scholar 

  39. Wang, X., Xu, D.: A novel image encryption scheme based on Brownian motion and PWLCM chaotic system. Nonlinear Dyn. 75(1–2), 345–353 (2014)

    Article  Google Scholar 

  40. Zhu, C., Xu, S., Hu, Y., et al.: Breaking a novel image encryption scheme based on Brownian motion and PWLCM chaotic system. Nonlinear Dyn. 79(2), 1511–1518 (2015)

    Article  Google Scholar 

  41. Zhu, C., Liao, C., Deng, X.: Breaking and improving an image encryption scheme based on total shuffling scheme. Nonlinear Dyn. 71(1–2), 25–34 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Mohamed Faraoun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souyah, A., Faraoun, K.M. Fast and efficient randomized encryption scheme for digital images based on Quadtree decomposition and reversible memory cellular automata. Nonlinear Dyn 84, 715–732 (2016). https://doi.org/10.1007/s11071-015-2521-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2521-3

Keywords

Navigation