Skip to main content
Log in

Bayesian parameter estimation and model selection for strongly nonlinear dynamical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Bayesian model selection and parameter estimation framework developed by Khalil et al. (J Sound Vib 332(15):3670–3691, 2013, Bayesian inference for complex and large-scale engineering systems. Ph.D. thesis, Carleton University, 2013) and Sandhu et al. (J Comput Methods Appl Mech Eng 282:161–183, 2014, Bayesian model selection and parameter estimation for a nonlinear fluid–structure interaction problem. Master’s thesis, Carleton University, 2012, 54th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, 2013) is extended to handle strongly nonlinear systems. The evidence required to estimate the posterior probability of each proposed model is computed using the Chib–Jeliazkov method. The posterior parameter samples generated using Metropolis–Hastings (M–H) Markov Chain Monte Carlo (MCMC) simulations are required by this method. The M–H MCMC-based parameter estimation procedure is complemented by an efficient particle filter and an ensemble Kalman filter for the strongly non-Gaussian state estimation problem. A strongly nonlinear system having multiple fixed (equilibrium) points is analyzed to demonstrate the efficacy of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Beck, J.L., Yuen, K.: Model selection using response measurements: Bayesian probabilistic approach. J. Eng Mech 130(2), 192–203 (2004). doi:10.1061/(ASCE)0733-9399(2004)130:2(192)

    Article  Google Scholar 

  2. Muto, M., Beck, J.L.: Bayesian updating and model class selection for hysteretic structural models using stochastic simulation. J. Vib. Control 14(1–2), 7–34 (2008)

    Article  MATH  Google Scholar 

  3. Cheung, S.H., Beck, J.L.: Calculation of posterior probabilities for Bayesian model class assessment and averaging from posterior samples based on dynamic system data. Comput. Aided Civ. Infrastruct. Eng. 25(5), 304–321 (2010). doi:10.1111/j.1467-8667.2009.00642.x

    Article  Google Scholar 

  4. Kass, R.E., Raftery, A.E.: Bayes factors. J. Am. Stat. Assoc. 90(430), 773–795 (1995)

    Article  MATH  Google Scholar 

  5. Jeffreys, H.: The Theory of Probability. OUP, Oxford (1961)

    Google Scholar 

  6. Akaike, H.: A new look at the statistical model identification. Autom. Control IEEE Trans. 19(6), 716–723 (1974). doi:10.1109/TAC.1974.1100705

    Article  MATH  MathSciNet  Google Scholar 

  7. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978). doi:10.2307/2958889

    Article  MATH  Google Scholar 

  8. Spiegelhalter, D.J., Best, N.G., Carlin, B.P., van der Linde, A.: Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 64(4), 583–639 (2002). doi:10.1111/1467-9868.00353

    Article  MATH  MathSciNet  Google Scholar 

  9. Khalil, M., Poirel, D., Sarkar, A.: Probabilistic parameter estimation of a fluttering aeroelastic system in the transitional Reynolds number regime. J. Sound Vib. 332(15), 3670–3691 (2013)

    Article  Google Scholar 

  10. Khalil, M.: Bayesian Inference for Complex and Large-Scale Engineering Systems. Ph.D. thesis, Carleton University (2013)

  11. Khalil, M., Sarkar, A., Adhikari, S.: Nonlinear filters for chaotic oscillatory systems. J. Nonlinear Dyn. 55(1–2), 113–137 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sandhu, R., Khalil, M., Sarkar, A., Poirel, D.: Bayesian model selection for nonlinear aeroelastic systems using wind-tunnel data. J. Comput. Methods Appl. Mech. Eng. 282, 161–183 (2014)

    Article  MathSciNet  Google Scholar 

  13. Sandhu, R.: Bayesian Model Selection and Parameter Estimation for a Nonlinear Fluid–Structure Interaction Problem. Master’s thesis, Carleton University (2012)

  14. Wasserman, L.: Bayesian model selection and model averaging. J. Math. Psychol. 44(1), 92–107 (2000). doi:10.1006/jmps.1999.1278

    Article  MATH  MathSciNet  Google Scholar 

  15. Sandhu, R., Khalil, M., Poirel D. Sarkar, A.: Model selection methods for nonlinear aeroelastic systems using wind-tunnel data. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2013)

  16. Evensen, G.: Data Assimilation: The Ensemble Kalman Filter. Springer, Berlin (2009)

    Book  Google Scholar 

  17. Mandel, J., Beezley, J. D.: Predictor–corrector and morphing ensemble filters for the assimilation of sparse data into high-dimensional nonlinear systems. In: Proceedings of the IOAS-AOLS, 11th Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface, San Antonio, TX, p. 4.12 (2007)

  18. Mandel, J., Beezley, J.: An ensemble Kalman-particle predictor–corrector filter for non-Gaussian data assimilation. In: Allen, G., Nabrzyski, J., Seidel, E., Albada, G., Dongarra, J., Sloot, P. (eds). Computational Science ICCS 2009 SE-53, volume 5545 of Lecture Notes in Computer Science, pp. 470–478, Springer, Berlin (2009). doi:10.1007/978-3-642-01973-9_53

  19. Bocquet, M., Wu, L., Pires, C.: Beyond Gaussian statistical modeling in geophysical data assimilation. Mon. Weather Rev. (2010). doi:10.1175/2010MWR3164.1

    Google Scholar 

  20. Papadakis, N., Mémin, E., Cuzol, A., Gengembre, N.: Data assimilation with the weighted ensemble Kalman filter. Tellus Ser A 62(5), 673–697 (2010)

    Google Scholar 

  21. Bisaillon, P., Sandhu, R., Khalil, M., Poirel, D., Sarkar, A.: Model selection for strongly nonlinear systems. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics (2013)

  22. Bisaillon, P., Sandhu, R., Khalil, M., Poirel, D., Sarkar, A.: A Bayesian parameter estimation and model selection algorithm for strongly nonlinear dynamical systems. In: 11th International Conference on Structural Safety & Reliability (2013)

  23. Haario, H., Saksman, E., Tamminen, J.: An adaptive Metropolis algorithm. Bernoulli 7, 223–242 (2001)

    MATH  MathSciNet  Google Scholar 

  24. Robert, C.: The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation. Springer, Berlin (2007)

    Google Scholar 

  25. Robert, C., Casella, G.: Introducing Monte Carlo Methods with R. Springer, New York, NY (2010). doi:10.1007/978-1-4419-1576-4

    Book  MATH  Google Scholar 

  26. Chen, Z.: Bayesian filtering: from Kalman filters to particle filters, and beyond. Statistics 182, 1–69 (2003)

    Article  Google Scholar 

  27. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  28. Chib, S., Jeliazkov, I.: Marginal likelihood from the Metropolis–Hastings output. J. Am. Stat. Assoc. 96(453), 270–281 (2001). doi:10.1198/016214501750332848

    Article  MATH  MathSciNet  Google Scholar 

  29. Jazwinski, A.H.: Stochastic Processes and Filtering Theory, Mathematics in Science and Engineering, vol. 63. Dover, New York (2007)

    Google Scholar 

  30. Bisaillon, P.: Bayesian Model Selection and Parameter Estimation for Strongly Nonlinear Dynamical Systems. Master’s thesis, Carleton University (2013)

  31. Haario, H., Saksman, E.: Adaptive proposal distribution for random walk Metropolis algorithm. Comput. Stat. 4, 1–32 (1999)

    Google Scholar 

  32. Beck, J.L.: Bayesian system identification based on probability logic. Struct. Control Health Monit. 17(7), 825–847 (2010). doi:10.1002/stc.424

  33. Khalil, M., Sarkar, A., Adhikari, S., Poirel, D.: The estimation of time-invariant parameters of noisy nonlinear oscillatory systems. J. Sound Vib. 344, 81–100 (2015)

  34. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Field. Springer, Berlin (1983)

    Book  Google Scholar 

  35. Miller, R.N., Ghill, M., Gauthiez, F.: Advanced data assimilation in strongly nonlinear dynamical systems. J. Atmos. Sci. 51(8), 1037–1056 (1994)

    Article  Google Scholar 

  36. Lynch, S.: Dynamical Systems with Applications using MATLAB. Birkhäuser, Basel (2004)

    Book  MATH  Google Scholar 

  37. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Applications of Mathematics. Springer, Berlin (1992)

    Book  Google Scholar 

  38. Gelman, A., Carlin, J., Stern, H., Rubin, D.: Bayesian Data Analysis (Chapman & Hall/CRC Texts in Statistical Science), 2nd edn. Chapman and Hall/CRC, London (2003)

    Google Scholar 

  39. van Strachan, R.W., Dijk, H.K.: Improper Priors with Well Defined Bayes Factors, Technical report. Econometric Institute Report (2004)

  40. Wolpert, R.L.: Stable Limit Laws for Marginal Probabilities from MCMC Streams: Acceleration of Convergence, Discussion Paper 2002-22. Duke University ISDS (2002)

  41. Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Prentice-Hall, Englewood Cliffs, NJ (1979)

    MATH  Google Scholar 

  42. Chen, Q.: Approximate Kalman Filtering. Approximations and Decomposition Series. World Scientific, Singapore (1993)

    Book  Google Scholar 

  43. Haykin, S.: Kalman Filtering and Neural Networks, Adaptive and Learning Systems for Signal Processing. Communications and Control Series. Wiley, New York (2001)

    Google Scholar 

  44. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, vol. 160 in Applied Mathematical Sciences, Springer, Berlin (2005)

  45. Häardie, W., Müller, M.: Multivariate and semiparametric Kernel regression. In: Smoothing and Regression, pp. 357–391. Wiley, New York (2000). doi:10.1002/9781118150658.ch12

  46. Kong, A., Liu, J.S., Wong, W.H.: Sequential imputations and Bayesian missing data problems. J. Am. Stat. Assoc. 89(425), 278–288 (1994)

    Article  MATH  Google Scholar 

  47. Douc, R., Cappe, O., Moulines, E.: Comparison of resampling schemes for particle filtering. In: Proceedings of ISPA 2005. The 4th International Symposium on Image and Signal Processing and Analysis. Zagreb, Croatia, pp. 64–69 (2005)

  48. Kantas, N., Doucet, A., Singh, S.S., Maciejowski, J.M.: An overview of sequential Monte Carlo methods for parameter estimation in general state-space models. In: Proceedings of the 15th IFAC Symposium on System Identification (SYSID), ML (2009)

Download references

Acknowledgments

P. Bisaillon and M. Khalil acknowledge the support of the Natural Sciences and Engineering Research Council of Canada through the award of a Graduate Scholarship. M. Khalil also acknowledges the support of the Canadian Department of National Defence. A. Sarkar acknowledges the support of a Discovery Grant from Natural Sciences and Engineering Research Council of Canada and the Canada Research Chair Program. D. Poirel acknowledges the support of the Canadian Department of National Defence, through the DSRI-TIF program, and a Discovery Grant from Natural Sciences and Engineering Research Council of Canada. The computing infrastructure is supported by the Canada Foundation for Innovation (CFI) and the Ontario Innovation Trust (OIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Sarkar.

Appendices

Appendix 1: Bayesian formulation of joint state and parameter estimation

The joint state and parameter pdf conditioned on data for a given model \(\mathcal {M}_i\) can be expressed by the multiplication of the conditional state pdf and the parameter posterior. The following equations explicitly depend on a given model \(\mathcal {M}_i\), but the symbol \(\mathcal {M}_i\) is removed from these equations for brevity.

(28)

The joint pdf can be expressed as [10, 12, 13, 16]

$$\begin{aligned}&p(\mathbf {x}_1,\ldots ,\mathbf {x}_k | \varvec{d}_1,\ldots , \varvec{d}_J, \varvec{\phi })p(\varvec{\phi } |\varvec{d}_1,\ldots , \varvec{d}_J) \propto \nonumber \\&\quad p(\varvec{\phi }) \left[ \prod _{j'=1}^{d(1)-1} p(\mathbf {x}_{j'} | \mathbf {x}_{j'-1}, \varvec{\phi }) \right] p(\mathbf {x}_{d(1)} | \mathbf {x}_{d(1)-1}, \varvec{\phi })\nonumber \\&\quad \quad \quad \times \,p(\varvec{d}_1 | \mathbf {x}_{d(1)}, \varvec{\phi })\nonumber \\&\quad \quad \quad \quad \quad \vdots \nonumber \\&\quad \quad \left[ \prod _{j'=d(J-1)+1}^{d(J)-1} p(\mathbf {x}_{j'} | \mathbf {x}_{j'-1}, \varvec{\phi }) \right] p(\mathbf {x}_{d(J)} | \mathbf {x}_{d(J)-1}, \varvec{\phi })\nonumber \\&\quad \quad \quad \times \,p(\varvec{d}_J | \mathbf {x}_{d(J)}, \varvec{\phi })\nonumber \\&\quad \quad \quad \quad \quad \vdots \nonumber \\&\quad \quad \left[ \prod _{j'=d(J)+1}^k p(\mathbf {x}_{j'} | \mathbf {x}_{j'-1}, {\varvec{\phi }}) \right] \end{aligned}$$
(29)

Hence the parameter posterior can be expressed by [10, 12, 13, 16]

$$\begin{aligned} p(\varvec{\phi } |\varvec{d}_1,\ldots , \varvec{d}_J)&\propto p(\varvec{\phi })p(\varvec{d}_1,\ldots , \varvec{d}_J |\varvec{\phi })\nonumber \\&\propto p(\varvec{\phi }) \prod \limits _{j=1}^J \int \limits _{-\infty }^{\infty } p\left( \mathbf {x}_{d(j)} | \mathbf {x}_{d(j)-1}, {\varvec{\phi }}\right) \nonumber \\&\quad \times \,p\left( \varvec{d}_j | \mathbf {x}_{d(j)}, {\varvec{\phi }}\right) d \mathbf {x}_{d(j)}. \end{aligned}$$
(30)

Equations (2830) highlight the relationship between the parameter posterior pdf and the conditional state pdf. For a non-Gaussian system, the accuracy of the model selection does not only depend on the nonlinear state estimator but also on a robust MCMC procedure to sample from the parameter posterior pdf.

Appendix 2: EKF

Although the details of the EKF are widely available (i.e., [29, 4144]), a brief description is presented in this “Appendix” for completeness. EKF linearizes the nonlinear model and measurement operators in Eqs. (3) and (4). In the forecast step, the physics of the system is described through the model operator. The next state of the system is predicted using the current state and the proposed model. In the update stage, the predicted state is combined with an incoming observation. The Kalman gain matrix achieves the balance between the predicted state and the incoming observation. We choose that the measurement error is \(\epsilon _j \sim \mathcal {N}(\varvec{0}, \varvec{\varGamma }_j)\) and the model error is \(q_k \sim \mathcal {N}(\varvec{0}, \varvec{Q}_k)\). When an observation is available, the update step takes place as follows  (e.g., [43, 44])

$$\begin{aligned}&\varvec{C}_j = \left. \frac{\partial \varvec{h}_{d(j)}(\mathbf {x}_{d(j)}, \varvec{\varepsilon }_j)}{\partial \mathbf {x}_{d(j)}} \right| _{\mathbf {x}_{d(j)} = \mathbf {x}_{d(j)}^f, \varvec{\varepsilon }_{j} = \varvec{0}} \end{aligned}$$
(31)
$$\begin{aligned}&\varvec{D}_j = \left. \frac{\partial \varvec{h}_{d(j)}(\mathbf {x}_{d(j)}, \varvec{\varepsilon }_j)}{\partial \varvec{\varepsilon }_j} \right| _{\mathbf {x}_{d(j)} = \mathbf {x}_{d(j)}^f, \varvec{\varepsilon }_j = \varvec{0}} \end{aligned}$$
(32)
$$\begin{aligned}&\varvec{K}_{d(j)} = \varvec{P}_{d(j)}^f \varvec{C}_j^T \left[ \varvec{C}_j \varvec{P}_{d(j)}^f \varvec{C}_j^T + \varvec{D}_j \varvec{\varGamma }_j \varvec{D}_j^T \right] ^{-1} \end{aligned}$$
(33)
$$\begin{aligned}&\mathbf {x}_{d(j)}^a = \mathbf {x}_{d(j)}^f + \varvec{K}_{d(j)} ( \varvec{d}_j - \varvec{h}_{d(j)}( \mathbf {x}_{d(j)}^f , \varvec{0} ) ) \end{aligned}$$
(34)
$$\begin{aligned}&\varvec{P}_{d(j)}^a = (\varvec{I} - \varvec{K}_j \varvec{C}_j) \varvec{P}_{d(j)}^f. \end{aligned}$$
(35)

The forecast step is given by (e.g., [43, 44])

$$\begin{aligned}&\varvec{A}_k = \left. \frac{\partial \varvec{g}_k(\mathbf {x}_k, \varvec{f}_k, \varvec{q}_k)}{\partial \mathbf {x}_k} \right| _{\mathbf {x}_k = \mathbf {x}_k^a, \varvec{q}_k = \varvec{0}} \end{aligned}$$
(36)
$$\begin{aligned}&\varvec{B}_k = \left. \frac{\partial \varvec{g}_k(\mathbf {x}_k, \varvec{f}_k, \varvec{q}_k)}{\partial \varvec{q}_k} \right| _{\mathbf {x}_k = \mathbf {x}_k^a, \varvec{q}_k = \varvec{0}} \end{aligned}$$
(37)
$$\begin{aligned}&\mathbf {x}_{k+1}^f = \varvec{g}_k(\mathbf {x}_k^a, \varvec{f}_k, \varvec{0}) \end{aligned}$$
(38)
$$\begin{aligned}&\varvec{P}_{k+1}^f = \varvec{A}_k \varvec{P}_{k}^a \varvec{A}_k^T + \varvec{B}_k \varvec{Q}_k \varvec{B}_k^T. \end{aligned}$$
(39)

Appendix 3: EnKF

The ensemble Kalman filter addresses two major limitations of EKF. It avoids the approximate closure used in EKF and circumvents the computational cost of storing the error covariance matrix for high-dimensional state-space model [16]. The statistical closure stems from the fact that higher-order moments in the error covariance are discarded leading to an unbound variance growth in some cases. In the ensemble Kalman filter, the initial state ensemble matrix is generated by drawing samples from the prior pdf of the initial state vector. When a measurement is available, the update takes place as (e.g., [10, 16, 30])

$$\begin{aligned}&\varvec{d}_{j,i} = \varvec{h}_{d(j)}\left( \varvec{x}_{d(j),i}^f, \varvec{\epsilon }_{j,i}\right) \end{aligned}$$
(40)
$$\begin{aligned}&\bar{\varvec{d}}_j = \frac{1}{N} \sum \limits _{i=1}^N \varvec{d}_{j,i} \end{aligned}$$
(41)
$$\begin{aligned}&\bar{\mathbf {x}}_{d\left( j\right) }^f = \frac{1}{N} \sum \limits _{i=1}^N \mathbf {x}_{d\left( j\right) ,i}^f \end{aligned}$$
(42)
$$\begin{aligned}&\varvec{P}_{xd} = \frac{1}{N-1} \sum \limits _{i=1}^N \left( \mathbf {x}_{d\left( j\right) ,i}^f-\bar{\mathbf {x}}_{d\left( j\right) }^f\right) \left( \varvec{d}_{j,i}-\bar{\varvec{d}}_j\right) ^T \end{aligned}$$
(43)
$$\begin{aligned}&\varvec{P}_{dd} = \frac{1}{N-1} \sum \limits _{i=1}^N \left( \varvec{d}_{j,i}-\bar{\varvec{d}}_j\right) \left( \varvec{d}_{j,i}-\bar{\varvec{d}}_j\right) ^T \end{aligned}$$
(44)
$$\begin{aligned}&\varvec{K}_{d\left( j\right) } = \varvec{P}_{xd} \varvec{P}_{dd}^{-1} \end{aligned}$$
(45)
$$\begin{aligned}&\mathbf {x}_{d\left( j\right) ,i}^a = \mathbf {x}_{d\left( j\right) ,i}^f + \varvec{K}_{d\left( j\right) }\left( \varvec{d}_j - \varvec{d}_{j,i} \right) . \end{aligned}$$
(46)

Note \(\mathbf {x}_{d(j),i}^a\) denotes the ith analysis or updated sample. Each updated sample is then propagated in time using the full nonlinear model in Eq. (3)

$$\begin{aligned} \mathbf {x}_{k+1,i}^f = \varvec{g}_k\left( \mathbf {x}_{k,i}^a, \varvec{f}_{k}, \varvec{q}_{k,i}\right) . \end{aligned}$$
(47)

The forecast mean of the state vector at time step \(k+1\) is

$$\begin{aligned} \bar{x}^f_{k+1} = \frac{1}{N} \sum \limits _{i=1}^N \mathbf {x}_{k+1,i}^f . \end{aligned}$$
(48)

Appendix 4: PF-EnKF

The particle filters are fully non-Gaussian estimation algorithm based on the Bayesian framework (e.g., [26, 27]). While each particle in EnKF has equal weight of 1 / N, the particles in PF have varying weights which depend on the likelihood, the prior and the proposal density. While the prediction step is the same for the PF and EnKF, the difference lies in the update step whereby the weight of each particle is modified as (e.g., [26, 27])

$$\begin{aligned} w_{d(j),i} \propto w_{d(j)-1,i} \dfrac{p\left( \varvec{d}_j|\mathbf {x}_{d(j),i}\right) p(\mathbf {x}_{d(j),i} | \mathbf {x}_{d(j)-1,i})}{q\left( \mathbf {x}_{d(j),i} | \mathbf {x}_{d(j)-1,i}, \varvec{d}_j\right) } \end{aligned}$$
(49)

where \(q(\mathbf {x}_{d(j),i} | \mathbf {x}_{d(j)-1,i}, \varvec{d}_j )\) is the proposal distribution, \(p(\mathbf {x}_{d(j),i} | \mathbf {x}_{d(j)-1,i})\) is the prior and \(p(\varvec{d}_j|\mathbf {x}_{d(j),i})\) is the likelihood function. A number of proposal densities are reported in the literature, for instance, refer to [10, 26, 27] for reviews. In this investigation, EnKF is used to construct the proposal density as it retains some non-Gaussian features in contrast to a Gaussian proposal obtained using EKF [10, 17, 18]. Using this proposal, the particles are nudged using the current observation in order to estimate the updated particle weights.

The update steps of the particle filter with EnKF proposal are as follows (e.g., [10, 17, 18])

$$\begin{aligned}&\varvec{d}_{j,i} = \varvec{h}_{d\left( j\right) }\left( \varvec{x}_{d\left( j\right) ,i}^f,\varvec{\epsilon }_{j,i} \right) \end{aligned}$$
(50)
$$\begin{aligned}&\bar{\varvec{d}}_j = \sum \limits _{i=1}^N w_{d\left( j\right) -1,i} \varvec{d}_{j,i} \end{aligned}$$
(51)
$$\begin{aligned}&\bar{\mathbf {x}}_{d\left( j\right) }^f = \sum \limits _{i=1}^N w_{d\left( j\right) -1,i} \mathbf {x}_{d\left( j\right) ,i}^f\end{aligned}$$
(52)
$$\begin{aligned}&\varvec{P}_{xd}= \dfrac{1}{1 - \sum \nolimits _{i=1}^N w_{d\left( j\right) -1,i}^2} \sum \limits _{i=1}^N w_{d\left( j\right) -1,i}\nonumber \\&\qquad \quad \times \,\left( \mathbf {x}_{d\left( j\right) ,i}^f-\bar{\mathbf {x}}_{d\left( j\right) }^f\right) \left( \varvec{d}_{j,i}-\bar{\varvec{d}}_j\right) ^T \end{aligned}$$
(53)
$$\begin{aligned}&\varvec{P}_{dd} = \dfrac{1}{1 - \sum \nolimits _{i=1}^N w_{d\left( j\right) -1,i}^2} \sum \limits _{i=1}^N w_{d\left( j\right) -1,i}\nonumber \\&\quad \qquad \quad \times \,\left( \varvec{d}_{j,i}-\bar{\varvec{d}}_j\right) \left( \varvec{d}_{j,i}-\bar{\varvec{d}}_j\right) ^T \end{aligned}$$
(54)
$$\begin{aligned}&\varvec{K}_{d\left( j\right) }= \varvec{P}_{xd} \varvec{P}_{dd}^{-1} \end{aligned}$$
(55)
$$\begin{aligned}&\mathbf {x}_{d\left( j\right) ,i}^a = \mathbf {x}_{d\left( j\right) ,i}^f + \varvec{K}_{d\left( j\right) }\left( \varvec{d}_j - \varvec{d}_{j,i} \right) \end{aligned}$$
(56)
$$\begin{aligned}&\tilde{w}_{d\left( j\right) ,i} = w_{d\left( j\right) -1,i} p\left( \varvec{d}_j | \varvec{x}_{d\left( j\right) ,i}^a\right) \nonumber \\&\quad \times \,\frac{\sum \nolimits _{l=1}^N w_{d\left( j\right) -1,l} \frac{1}{|\varvec{H}_f|}K\left( \varvec{H}_f^{-1} \left( \mathbf {x}_{d\left( j\right) ,l}^f-\mathbf {x}_{d\left( j\right) ,i}^a\right) \right) }{\sum \nolimits _{l=1}^N \frac{1}{N} \frac{1}{|\varvec{H}_a|}K\left( \varvec{H}_a^{-1} \left( \mathbf {x}_{d\left( j\right) ,l}^a-\mathbf {x}_{d\left( j\right) ,i}^a\right) \right) } \end{aligned}$$
(57)
$$\begin{aligned}&w_{d\left( j\right) ,i} = \frac{\tilde{w}_{d\left( j\right) ,i}}{\sum \nolimits _{i=1}^N \tilde{w}_{d\left( j\right) ,i}}. \end{aligned}$$
(58)

where \(K(\cdot )\) is a Gaussian kernel and \(\varvec{H}_a\) and \(\varvec{H}_f\) are the bandwidth matrices for the proposal and the prior, respectively. These bandwidth matrices are defined as follows [10, 45]

$$\begin{aligned} \varvec{H}_a&= N^{\frac{-1}{n+4}} \left[ \dfrac{1}{N-1} \sum \limits _{i=1}^N \left( \mathbf {x}_{d(j),i}^a-\bar{\mathbf {x}}_{d(j)}^a\right) \right. \nonumber \\&\quad \times \,\left. \left( \mathbf {x}_{d(j),i}^a-\bar{\mathbf {x}}_{d(j)}^a\right) ^T \right] ^{\frac{1}{2}} \end{aligned}$$
(59)
$$\begin{aligned} {\varvec{H}}_{f}&=N_{eff}^{\frac{-1}{n+4}} \left[ \dfrac{1}{1 - \sum \limits _{i=1}^N w_{d(j)-1,i}^2} \sum \limits _{i=1}^N w_{d(j)-1,i} \right. \nonumber \\&\quad \times \,\left. \left( \mathbf {x}_{d(j),i}^f-\bar{\mathbf {x}}_{d(j)}^f\right) \left( \mathbf {x}_{d(j),i}^f-\bar{\mathbf {x}}_{d(j)}^f\right) ^T \right] ^{\frac{1}{2}} \end{aligned}$$
(60)

where N is the number of samples, n is the dimension of the state vector, and \(N_{eff}\) is the effective ensemble size defined in Eq.(62). In the forecast step, the full nonlinear model in Eq. (3) is used to propagate each particle forward in time

$$\begin{aligned} \mathbf {x}_{k+1,i}^f = \varvec{g}_k\left( \mathbf {x}_{k,i}^a, \varvec{f}_k, \varvec{q}_{k,i}\right) . \end{aligned}$$
(61)

Degeneracy is a common problem with particle filters [26, 27], whereby only few particles with higher weights are clustered in the high-probability region. The particles in the low-probability region have negligible weights. A measure of this phenomenon is the effective ensemble size described as (e.g., [10, 26, 27, 46])

$$\begin{aligned} N_{eff} = \dfrac{1}{\sum \nolimits _{i=1}^N w_{d(j),i}^2}. \end{aligned}$$
(62)

One way to reduce the degeneracy is to increase the number of particles which in turn enhances the computational cost. Another option is to resample when the effective ensemble size is below a certain threshold. While several resampling algorithms are available [27, 47], the multinomial resampling [47, 48] has been successfully used in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisaillon, P., Sandhu, R., Khalil, M. et al. Bayesian parameter estimation and model selection for strongly nonlinear dynamical systems. Nonlinear Dyn 82, 1061–1080 (2015). https://doi.org/10.1007/s11071-015-2217-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2217-8

Keywords

Navigation