Skip to main content

Advertisement

Log in

Dynamic control for permanent magnet synchronous generator system using novel modified recurrent wavelet neural network

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Because permanent magnet synchronous generator (PMSG) system driven by permanent magnet synchronous motor (PMSM) based on wind turbine emulator (WTE) is a nonlinear and time-varying system with high complication, an accurate dynamic model of the PMSG system directly driven by WTE is difficult to establish for the linear controller design. In order to conquer this difficulty and improve the robustness of dynamic system, the PMSG system controlled by the online-tuned parameters of the novel modified recurrent wavelet neural network (NN)-controlled system is proposed to control output voltages and powers of controllable rectifier and inverter in this study. First, a closed-loop PMSM-driven system based on WTE is designed for driving the PMSG system to generate output power. Second, the rotor speeds of the PMSG, the voltages, and currents of the two power converters are detected simultaneously to yield maximum power output. In addition, two sets of the online-tuned parameters of the modified recurrent wavelet NN controllers in the controllable rectifier and inverter are developed for the voltage-regulating controllers in order to improve output performance. Finally, some experimental results are verified to show the effectiveness of the proposed novel modified recurrent wavelet NN controller for the power output of the PMSG system driven by WTE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Tan, K., Islam, S.: Optimum control strategies in energy conversion of pmsg wind turbine system without mechanical sensors. IEEE Trans. Energy Convers. 19, 392–400 (2004)

    Article  Google Scholar 

  2. Kolhe, M., Joshi, J.C., Kothari, D.P.: Performance analysis of a directly coupled photovoltaic water-pumping system. IEEE Trans. Energy Convers. 19, 613–618 (2004)

    Article  Google Scholar 

  3. Andersen, G.K., Klumpner, C., Kjaer, S.B., Blaabjerg, F.: A new green power inverter for fuel cells. In: Proceedings of IEEE 33rd Annual Power Electronics Specialists Conference, pp. 727–733 (2002)

  4. Lubosny, Z.: Wind Turbine Operation in Electric Power Systems. Springer, Berlin (2003)

    Book  Google Scholar 

  5. Ackermann, T.: Wind Power in Power Systems. Wiley, New York (2005)

    Book  Google Scholar 

  6. Karrari, M., Rosehart, W., Malik, O.P.: Comprehensive control strategy for a variable speed cage machine wind generation unit. IEEE Trans. Energy Convers. 20, 415–423 (2005)

    Article  Google Scholar 

  7. Boldea, I.: Synchronous Generators. Taylor and Francis, Boca Raton (2005)

  8. Chinchilla, M., Arnaltes, S., Burgos, I.C.: Control of permanent magnet generators applied to variable-speed wind-energy systems connected to the grid. IEEE Trans. Energy Convers. 21, 130–135 (2006)

    Article  Google Scholar 

  9. Sajedi, S., Kahlifeh, F., Karimi, T., Khalifeh, Z.: Maximum power point tracking of variable speed wind energy conversion system. Int. J. Phys. Sci. 6, 6843–6851 (2011)

    Google Scholar 

  10. Gharedaghi, F., Jamali, H., Deysi, M., Khalili, A.: Maximum power point tracking of variable speed wind generation system connected to permanent magnet synchronous generator. Int. Rev. Electr. Eng. 4, 1044–1049 (2011)

    Google Scholar 

  11. Bueno, E.J., Cobreces, S., Rodriguez, F.J., Hernandez, A., Felipe, E.: Design of a back-to-back npc converter interface for wind turbines with squirrel-cage induction generator. IEEE Trans. Energy Convers. 23, 932–945 (2008)

    Article  Google Scholar 

  12. Arbi, J., Ghorbal, M.J.B., Slama-Belkhodja, I., Charaabi, L.: Direct virtual torque control for doubly fed induction generator grid connection. IEEE Trans. Ind. Electron. 56, 4163–4173 (2009)

    Article  Google Scholar 

  13. Chen, C.H., Hong, C.M., Ou, T.C.: WRBF network based control strategy for PMSG on smart grid. In: Proceedings of the International Conference on Intelligent System Applications to Power Systems, pp. 1–6 (2011)

  14. Delyon, D., Juditsky, A., Benveniste, A.: Accuracy analysis for wavelet approximations. IEEE Trans. Neural Netw. 6, 332–348 (1995)

    Google Scholar 

  15. Chen, C.F., Hsiao, C.H.: Wavelet approach to optimizing dynamic systems. IEE Proc. Control Theory Appl. 146, 213–219 (1999)

    Article  Google Scholar 

  16. Zhang, Q., Benveniste, A.: Wavelet networks. IEEE Trans. Neural Netw. 3, 889–898 (1992)

    Google Scholar 

  17. Zhang, J., Walter, G.G., Miao, Y., Lee, W.N.W.: Wavelet neural networks for function learning. IEEE Trans. Signal Process. 43, 1485–1496 (1995)

    Article  Google Scholar 

  18. Zhang, Z., Zhao, C.: A fast learning algorithm for wavelet network and its application in control. In: Proceedings of the IEEE International Conference on Control and Automation, pp. 1403–1407 (2007)

  19. Wei, H.L., Billings, S.A.: A unified wavelet-based modelling framework for nonlinear system identification: the wanarx model structure. Int. J. Control 77, 351–366 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wei, H.L., Billings, S.A., Balikhin, M.A.: Wavelet based nonparametric narx models for nonlinear input–output system identification. Int. J. Syst. Sci. 37, 1089–1096 (2006)

    Google Scholar 

  21. Ravan, M., Amineh, R.K., Karrari, M., Rosehart, W.B., Malik, O.P.: Synchronous machine model identification using continuous wavelet narx network. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 223, 467–477 (2009)

    Google Scholar 

  22. Xu, J., Ho, D.W.C.: Adaptive wavelet networks for nonlinear system identification. In: Proceedings of the American Control Conference, pp. 3472–3473 (1999)

  23. Sureshbabu, N., Farrell, J.A.: Wavelet-based system identification for nonlinear control. IEEE Trans. Autom. Control 44, 412–417 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Billings, S.A., Wei, H.L.: A new class of wavelet networks for nonlinear system identification. IEEE Trans. Neural Netw. 16, 862–874 (2005)

    Google Scholar 

  25. Abiyev, R.H., Kaynak, O.: Fuzzy wavelet neural networks for identification and control of dynamic plants—a novel structure and a comparative study. IEEE Trans. Ind. Electron. 55, 3133–3140 (2008)

    Article  Google Scholar 

  26. Giaouris, D., Finch, J.W., Ferreira, O.C., Kennel, R.M., El-Murr, G.M.: Wavelet denoising for electric drives. IEEE Trans. Ind. Electron. 55, 543–550 (2008)

    Article  Google Scholar 

  27. Gonzalez, D., Bialasiewicz, J.T., Balcells, J., Gago, J.: Wavelet-based performance evaluation of power converters operating with modulated switching frequency. IEEE Trans. Ind. Electron. 55, 3167–3176 (2008)

    Article  Google Scholar 

  28. Chung, C.A., Lee, T.T., Tien, C.C., Hsu, C.F.: Adaptive wavelet neural network control for dc motors via second-order sliding-mode approach. In: Proceedings International Conference on Machine Learning and Cybernetics, pp. 1174–1179 (2011)

  29. Gokmen, G.: Wavelet based instantaneous reactive power calculation method and a power system application sample. Int. Rev. Electr. Eng. 4, 745–752 (2011)

    Google Scholar 

  30. Ling, S.H., Iu, H.H.C., Leung, F.H.F., Chan, K.Y.: Improved hybrid particle swarm optimized wavelet neural network for modeling the development of fluid dispensing for electronic packaging. IEEE Trans. Ind. Electron. 55, 3447–3460 (2008)

    Google Scholar 

  31. Wen, G.X., Liu, Y.J., Tong, S.C., Li, X.L.: Adaptive neural output feedback control of nonlinear discrete-time systems. Nonlinear Dyn. 65, 65–75 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zou, A.M., Kumar, K.D.: Neural network-based adaptive output feedback formation control for multi-agent systems. Nonlinear Dyn. 70, 1283–1296 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sun, G., Wang, D., Li, T., Peng, Z., Wang, H.: Single neural network approximation based adaptive control for a class of uncertain strict-feedback nonlinear systems. Nonlinear Dyn. 72, 175–184 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wang, H., Chen, B., Lin, C.: Adaptive neural tracking control for a class of perturbed pure-feedback. Nonlinear Dyn. 72, 207–220 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  35. Bouzari, H., Moradi, H., Bouzari, E.: Adaptive neuro-wavelet system for the robust control of switching power supplies. In: IEEE International Multitopic Conference, pp. 1–6 (2008)

  36. Funahashi, K., Nakamura, Y.: Approximation of dynamical systems by continuous time recurrent neural network. Neural Netw. 6, 801–806 (1993)

    Article  Google Scholar 

  37. Jin, L., Nikiforuk, P.N., Gupta, M.: Approximation of discrete-time state-space trajectories using dynamic recurrent networks. IEEE Trans. Autom. Control 40, 1266–1270 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  38. Ku, C.C., Lee, K.Y.: Diagonal recurrent neural networks for dynamical system control. IEEE Trans. Neural Netw. 6, 144–156 (1995)

    Google Scholar 

  39. Lu, C.H., Tsai, C.C.: Adaptive predictive control with recurrent neural network for industrial processes: an application to temperature control of a variable-frequency oil-cooling machine. IEEE Trans. Ind. Electron. 55, 1366–1375 (2008)

    Google Scholar 

  40. Yu, J., Yu, H., Chen, B., Gao, J., Qin, Y.: Direct adaptive neural control of chaos in the permanent magnet synchronous motor. Nonlinear Dyn. 70, 1879–1887 (2012)

    Article  MathSciNet  Google Scholar 

  41. Wang, H., Chen, B., Lin, C.: Direct adaptive neural control for strict-feedback stochastic nonlinear systems. Nonlinear Dyn. 67, 2703–2718 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  42. Yoo, S.J., Park, J.B., Choi, Y.H.: Stable predictive control of chaotic systems using self-recurrent wavelet neural network. Int. J. Autom. Control Syst. 3, 43–55 (2005)

    Google Scholar 

  43. Yoo, S.J., Choi, Y.H., Park, J.B.: Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: adaptive learning rates approach. IEEE Trans. Circuits Syst. I 53, 1381–1394 (2006)

    Google Scholar 

  44. Lu, C.H.: Design and application of stable predictive controller using recurrent wavelet neural networks. IEEE Trans. Ind. Electron. 56, 3733–3742 (2009)

    Google Scholar 

  45. Chen, C.H., Hsu, C.F.: Recurrent wavelet neural backstepping controller design with a smooth compensator. Neural Comput. Appl. 19, 1089–1100 (2010)

    Article  Google Scholar 

  46. Han, S.I., Lee, J.M.: Adaptive dynamic surface control with sliding mode control and rwnn for robust positioning of a linear motion stage. Mechatronics 22, 222–238 (2012)

    Article  Google Scholar 

  47. Singh, M., Santoso, S.: Dynamic models for wind turbines and wind power plants. Subcontract, Report. NREL/SR-5500-52780 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Hong Lin.

Additional information

1. The modified recurrent wavelet NN controlled output power of the PMSG system.

2. A WTE is designed to generate the maximum power for the PMSG system.

3. Two sets online training modified recurrent wavelet NNs are developed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CH. Dynamic control for permanent magnet synchronous generator system using novel modified recurrent wavelet neural network. Nonlinear Dyn 77, 1261–1284 (2014). https://doi.org/10.1007/s11071-014-1376-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1376-3

Keywords

Navigation