Skip to main content
Log in

Nonlinear vibration modes and instability of a conceptual model of a spar platform

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Spar floating platforms have been largely used for deepwater drilling, oil and natural gas production, and storage. In extreme weather conditions, such structures may exhibit a highly nonlinear dynamical behavior due to heave-pitch coupling. In this paper, a 2-DOF model is used to study the heave and pitch dynamical response in free and forced vibration. Special attention is given to the determination of the nonlinear vibration modes (NNMs). Nonsimilar and similar NNMs are obtained analytically by direct application of asymptotic and Galerkin-based methods. The results show important NNM features such as instability and multiplicity of modes. The NNMs are used to generate reduced order models consisting of SDOF nonlinear oscillators. This allows analytic parametric studies and the derivation of important features of the system such as its frequency-amplitude relations and resonance curves. The stability is analyzed by the Floquet theory. The analytical results show a good agreement with the numerical solution obtained by direct integration of the equation of motion. Instability analyses using bifurcation diagrams and Mathieu charts are carried out to understand the fundamental mechanism for the occurrence of unstable coupled heave-pitch resonant motions of floating structures in waves and to study the dependencies of the growth rate of unstable motions on physical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Clive, E., Dorman, E., Pond, S.: A small buoy for meteorological measurements at sea. Deep-Sea Res. 22, 177–184 (1975)

    Google Scholar 

  2. Alok, K., Jha, P., Jong, R., Steven, R., Winterstein, R.: Motions of a spar buoy in random seas: comparing predictions and model test results. In: Proc. BOSS-97, vol. 2, pp. 333–347 (1997)

    Google Scholar 

  3. Capobianco, R., Reya, V., Le Calvé, O.: Experimental survey of the hydrodynamic performance of a small spar buoy. Appl. Ocean Res. 24, 309–320 (2002)

    Article  Google Scholar 

  4. Umar, A., Datta, T.K.: Nonlinear response of a moored buoy. Ocean Eng. 30, 1625–1646 (2003)

    Article  Google Scholar 

  5. Glanville, R.S., Halkyard, J.E., Davies, R.L., Steen, A., Frimm, F.: Neptune project: spar history and design considerations. In: Offshore Tech. Conf., Houston, Texas (1997)

    Google Scholar 

  6. Agarwal, A.K., Jain, A.K.: Dynamic behavior of offshore spar platforms under regular sea waves. Ocean Eng. 30, 487–516 (2003)

    Article  Google Scholar 

  7. Wang, Y., Yang, J., Hu, Z., Xiao, L.: Theoretical research on hydrodynamics of a geometric spar in frequency and time-domains. J. Hydrodyn. 20, 30–38 (2008)

    Article  Google Scholar 

  8. Madjid, K., Torgeir, M.: Wave- and wind-induced dynamic response of a spar-type offshore wind turbine. Ocean Eng. 138, 9–20 (2012)

    Google Scholar 

  9. Drew, B., Plummer, A.R., Sahinkaya, M.N.: A review of wave energy converter technology. J. Power Energy 223(8), 887–902 (2009)

    Article  Google Scholar 

  10. Falcão, A.F.O., Henriques, J.C.C., Cândido, J.J.: Dynamics and optimization of the OWC spar buoy wave energy converter. Renew. Energy 48, 369–381 (2012)

    Article  Google Scholar 

  11. Haslum, H.A., Faltinsen, O.M.: Alternative shape of spar platforms for use in hostile areas. In: Proc. Offshore Tech. Conf. OTC10953, Houston, TX (1990)

    Google Scholar 

  12. Ma, Q.W., Patel, M.H.: On the non-linear forces acting on a floating spar platform in ocean waves. Appl. Ocean Res. 23, 29–40 (2001)

    Article  Google Scholar 

  13. Rho, J.B., Choi, H.S.: Heave and pitch motions of a dpar platform with damping plate. In: Proc. Intern. Offshore Polar Eng. Conf., Kitakyushu, Japan (2002)

    Google Scholar 

  14. Rho, J.B., Choi, H.S.: A study on Mathieu-type instability of conventional spar platform in regular waves. Int. J. Offshore Polar Eng. 15, 104–108 (2005)

    Google Scholar 

  15. Agarwal, A.K., Jain, A.K.: Nonlinear coupled dynamic response of Offshore spar platforms under regular sea waves. Ocean Eng. 30, 517–551 (2003)

    Article  Google Scholar 

  16. Koo, B.J., Kim, M.H., Randall, R.E.: Mathieu instability of a spar platform with mooring and risers. Ocean Eng. 31, 2175–2208 (2004)

    Article  Google Scholar 

  17. Jingrui, Z., Yougang, T., Wenjun, S.: A study on the combination resonance response of a classic spar platform. J. Vib. Control 16(14), 2083–2107 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Liu, Y., Yan, H., Young, T.: Nonlinear resonant response of deep draft platforms in surface waves. In: Proc. Inter. Conf. Ocean, Offshore Arctic Eng., vol. 3 (2010)

    Google Scholar 

  19. Shen, W., Tang, Y.: Stochastic analysis of nonlinear coupled heave-pitch motion for the truss spar platform. J. Marine Sci. Appl. 10, 471–477 (2011)

    Article  Google Scholar 

  20. Li, B., Ou, J., Teng, B.: Numerical investigation of damping effects on coupled heave and pitch motion of an innovative deep draft multi-spar. J. Mar. Sci. Technol. 19(2), 231–244 (2011)

    Google Scholar 

  21. Nayfeh, A.H., Mook, D.T., Marshall, L.R.: Nonlinear coupling of pitch and roll modes in ship motions. J. Hydronaut. 7(4), 145–152 (1973)

    Article  Google Scholar 

  22. Spyrou, K.J., Thompson, J.M.T.: The nonlinear dynamics of ship motions: a field overview and some recent developments. Philos. Trans. R. Soc. Lond. 358, 1735–1760 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fossen, T., Nijmeijer, I.H.: Parametric Resonance in Dynamical Systems. Springer, New York (2012)

    Book  Google Scholar 

  24. Yang, M., Teng, B., Ning, D., Shi, Z.: Coupled dynamic analysis for wave interaction with a truss spar and its mooring line/riser system in time domain. Ocean Eng. 39, 72–87 (2012)

    Article  Google Scholar 

  25. He, Z., Epureanu, B.I., Pierre, C.: Parametric study of the aeroelastic response of mistuned bladed disks. Comput. Struct. 85, 852–865 (2007)

    Article  Google Scholar 

  26. Han, S.M., Benaroya, H.: Nonlinear and Stochastic Dynamics of Compliant Offshore Structures. Kluwer Academic, Norwell (2002)

    Book  MATH  Google Scholar 

  27. Chakrabarti, S.K.: Handbook of Offshore Engineering. Elsevier, Amsterdam (2005)

    Google Scholar 

  28. Rosenberg, R.M.: On normal vibrations of a general class of nonlinear dual-mode systems. J. Appl. Mech. 28, 275–283 (1961)

    Article  MATH  Google Scholar 

  29. Vakakis, A.F.: Analysis and identification of linear and nonlinear normal modes in vibrating systems. Ph.D. Thesis, California Inst. Tech. (1991)

  30. Shaw, S.W., Pierre, C.: Nonlinear normal modes and invariant manifold. J. Sound Vib. 150(1), 170–173 (1991)

    Article  MathSciNet  Google Scholar 

  31. Orlando, D., Gonçalves, P.B., Rega, G., Lenci, S.: Influence of symmetries and imperfections on the non-linear vibration modes of archetypal structural systems. Int. J. Non-Linear Mech. 49, 175–195 (2013)

    Article  Google Scholar 

  32. Mazzilli, C.E.N., Sanches, C.T.: Non-linear normal modes of a fixed-moored offshore catenary riser. In: Proc. of XIX Conference AIMETA (2009)

    Google Scholar 

  33. Shaw, S.W., Pierre, C.: Normal modes for non-linear vibratory systems. J. Sound Vib. 164(1), 85–124 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  34. Pesheck, E., Pierre, C., Shaw, W.S.: A new Galerkin-based approach for accurate non-linear normal modes through invariant manifolds. J. Sound Vib. 249(5), 971–993 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Jiang, D., Pierre, C., Shaw, S.W.: Large-amplitude nonlinear normal modes of piecewise linear systems. J. Sound Vib. 272, 869–891 (1994)

    Article  MathSciNet  Google Scholar 

  36. Falzarano, J.M., Clague, R.E., Kota, R.S.: Application of nonlinear normal mode analysis to the nonlinear and coupled dynamics of a floating offshore platform with damping. Nonlinear Dyn. 25, 255–274 (2001)

    Article  MATH  Google Scholar 

  37. Agnes, G.S., Inman, D.J.: Performance of nonlinear vibration absorbers for multi-degrees-of-freedom systems using nonlinear normal modes. Nonlinear Dyn. 25, 275–292 (2001)

    Article  MATH  Google Scholar 

  38. Nayfeh, S.A., Nayfeh, A.H.: On nonlinear normal modes of continuous systems. J. Vib. Acoust. 116, 129–136 (1994)

    Article  Google Scholar 

  39. Apiwattanalunggarn, P.: Model reduction of nonlinear structural systems using nonlinear normal modes and component mode synthesis. Ph.D. Thesis. Mich. St. Un., Michigan (2003)

  40. Pesheck, E.: Reduced order modeling of nonlinear structural systems using nonlinear normal modes and invariant manifolds. Ph.D. Thesis, University of Michi. Ann Arbor (2000)

  41. Hann, S.M., Benaroya, H.: Non-linear coupled transverse and axial vibration of a compliant structure. Part 2 Forced vibration. J. Sound Vib. 237(5), 875–900 (2000)

    Article  Google Scholar 

  42. Wang, F.: Nonlinear normal modes and nonlinear model reduction for discrete and multi-component continuous systems. Ph.D. Thesis, Purdue University (2008)

  43. Ferreira, J.V., Serpa, A.L.: Application of the arc-length method in nonlinear frequency response. J. Sound Vib. 284, 133–149 (2005)

    Article  Google Scholar 

  44. Machado, V.L.S.S.: Multiple bifurcation and non-linear behaviour of non-linear dynamical system. PhD Dissertation, Un. Federal Rio de Janeiro (1993)

  45. Jordan, D.W., Smith, P.: Nonlinear Ordinary Differential Equations—An Introduction for Scientists and Engineers. Oxford University Press, Keele (2007)

    MATH  Google Scholar 

  46. Shaw, S.W., Pierre, C., Pesheck, E.: Modal analysis-based reduced-order models for nonlinear structures—an invariant manifold approach. Shock Vib. Dig. 31(1), 3–16 (1999)

    Article  Google Scholar 

  47. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, part I: A useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009)

    Article  Google Scholar 

  48. Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, New York (1990)

    Google Scholar 

  49. Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Sandstede, B., Wang, X.: In: AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont). Concordia University, Montreal, Canada (1998)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Brazilian research agencies CAPES, CNPq, and FAPERJ and the help of Dr. Eulher C. Carvalho.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo B. Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavassoni, E., Gonçalves, P.B. & Roehl, D.M. Nonlinear vibration modes and instability of a conceptual model of a spar platform. Nonlinear Dyn 76, 809–826 (2014). https://doi.org/10.1007/s11071-013-1171-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1171-6

Keywords

Navigation