Skip to main content
Log in

Control and synchronization of chaos systems using time-delay estimation and supervising switching control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we present a new technique, developed using time-delay estimation (TDE) and supervising switching control (SSC), for the control and synchronization of chaos systems. The proposed technique consists of three units: a time-delay estimation unit that cancels system dynamics, a pole placement control unit that shapes error dynamics, and an SSC unit that is activated when the system dynamics are rapidly changing. We prove the stability of the closed-loop system using the Lyapunov analysis method. To verify the control and synchronization performance of the proposed technique (TDE-SSC), we compare it with TDC using numerical simulation. Our results indicate that the proposed scheme is an easily understood, numerically efficient, robust, and accurate solution for the control and synchronization of chaos systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Singer, J., Wang, Y.-Z., Bau, H.H.: Controlling a chaotic system. Phys. Rev. Lett. 66(9), 1123–1125 (1991)

    Article  Google Scholar 

  2. Harb, A.M.: Nonlinear chaos control in a permanent magnet reluctance machine. Chaos Solitons Fractals 19(5), 1217–1224 (2004)

    Article  MATH  Google Scholar 

  3. Kellert, S.H.: In The Wake of Chaos: Unpredictable Order in Dynamic Systems. University of Chicago Press, Chicago (1994)

    Google Scholar 

  4. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, D., Zhang, R., Sprott, J.C., Ma, X.: Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control. Nonlinear Dyn. 70(2), 1549–1561 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gholami, A., Markazi, A.H.D.: A new adaptive fuzzy sliding mode observer for a class of MIMO nonlinear systems. Nonlinear Dyn. 70(3), 2095–2105 (2012)

    Article  MathSciNet  Google Scholar 

  7. Tusset, A.M., Balthazar, J.M., Bassinello, D.G., Pontes, B.R. Jr., Felix, J.L.P.: Statements on chaos control designs, including a fractional order dynamical system, applied to a “MEMS” comb-drive actuator. Nonlinear Dyn. 69(4), 1837–1857 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Faieghi, M., Kuntanapreeda, S., Delavari, H., Baleanu, D.: LMI-based stabilization of a class of fractional-order chaotic systems. Nonlinear Dyn. 72(1–2), 301–309 (2013). doi:10.1007/s11071-012-0714-6

    Article  MATH  MathSciNet  Google Scholar 

  9. Kwon, O.M., Son, J.W., Lee, S.M.: Constrained predictive synchronization of discrete-time chaotic Lur’e systems with time-varying delayed feedback control. Nonlinear Dyn. 72(1–2), 129–140 (2012). doi:10.1007/s11071-012-0697-3

    MathSciNet  Google Scholar 

  10. Jeong, S.C., Ji, D.H., Park, J.H., Won, S.C.: Adaptive synchronization for uncertain complex dynamical network using fuzzy disturbance observer. Nonlinear Dyn. 71(1–2), 223–234 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pan, I., Korre, A., Das, S., Durucan, S.: Chaos suppression in a fractional order financial system using intelligent regrouping PSO based fractional fuzzy control policy in the presence of fractional Gaussian noise. Nonlinear Dyn. 70(4), 2445–2461 (2012)

    Article  MathSciNet  Google Scholar 

  12. Yu, J., Yu, H., Chen, B., Gao, J., Qin, Y.: Direct adaptive neural control of chaos in the permanent magnet synchronous motor. Nonlinear Dyn. 70(3), 1879–1887 (2012)

    Article  MathSciNet  Google Scholar 

  13. Aghababa, M.P., Aghababa, H.P.: Chaos suppression of rotational machine systems via finite-time control method. Nonlinear Dyn. 69(4), 1881–1888 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Aghababa, M.P., Aghababa, H.P.: A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs. Nonlinear Dyn. 69(4), 1903–1914 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Aghababa, M.P., Aghababa, H.P.: Finite-time stabilization of a non-autonomous chaotic rotating mechanical system. J. Franklin Inst. 349, 2875–2888 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Aghababa, M.P., Aghababa, H.P.: Finite-time stabilization of non-autonomous uncertain governor systems with input nonlinearities. J. Vib. Control (2012). doi:10.1177/1077546312463715

    Google Scholar 

  17. Aghababa, M.P., Aghababa, H.P.: Robust synchronization of a chaotic mechanical system with nonlinearities in control inputs. Nonlinear Dyn. 73, 1–14 (2013)

    Article  Google Scholar 

  18. Aghababa, M.P., Aghababa, H.P.: Stabilization of gyrostat system with dead-zone nonlinearity in control input. J. Vib. Control (2013). doi:10.1177/1077546313486506

    Google Scholar 

  19. Aghababa, M.P.: Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems. Int. J. Control 86(10), 1744–1756 (2013). doi:10.1080/00207179.2013.796068

    Article  Google Scholar 

  20. Yang, C.H., Li, S.Y., Tsen, P.C.: Synchronization of chaotic system with uncertain variable parameters by linear coupling and pragmatical adaptive tracking. Nonlinear Dyn. 70(3), 2187–2202 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Youcef-Toumi, K., Ito, O.: A time delay controller for systems with unknown dynamics. J. Dyn. Syst. Meas. Control 112(1), 133–142 (1990)

    Article  MATH  Google Scholar 

  22. Hsia, T.C., Lasky, T.A., Guo, Z.: Robust independent joint controller design for industrial robot manipulators. IEEE Trans. Ind. Electron. 38(1), 21–25 (1991)

    Article  Google Scholar 

  23. Jin, M., Kang, S.H., Chang, P.H.: Robust compliant motion control of robot with nonlinear friction using time-delay estimation. IEEE Trans. Ind. Electron. 55(1), 258–269 (2008)

    Article  Google Scholar 

  24. Jin, M., Lee, J.O., Chang, P.H., Choi, C.T.: Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans. Ind. Electron. 56(9), 3593–3601 (2009)

    Article  Google Scholar 

  25. Jin, M., Jin, Y., Chang, P.H., Choi, C.: High-accuracy tracking control of robot manipulators using time delay estimation and terminal sliding mode. Int. J. Adv. Robot. Syst. 8(4), 65–78 (2011)

    Google Scholar 

  26. Jin, M., Chang, P.H.: Simple robust technique using time delay estimation for the control and synchronization of Lorenz systems. Chaos Solitons Fractals 41(5), 2672–2680 (2009)

    Article  MATH  Google Scholar 

  27. Lü, J., Chen, G., Cheng, D., Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurc. Chaos 12(12), 2917–2926 (2002)

    Article  MATH  Google Scholar 

  28. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer, New York (1982)

    Book  MATH  Google Scholar 

  29. Arneodo, A., Coullet, P., Spiegel, E., Tresser, C.: Asymptotic chaos. Physica D 14(3), 327–347 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  30. Koronovskii, A.A., Moskalenko, O.I., Hramov, A.E.: On the use of chaotic synchronization for secure communication. Phys. Usp. 52(12), 1213–1238 (2009)

    Article  Google Scholar 

  31. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  Google Scholar 

  32. Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12(03), 659–661 (2002)

    Article  MATH  Google Scholar 

  33. Steven, C.C., Raymond, P.C.: Numerical Methods for Engineers. McGraw-Hill, New York (2001)

    Google Scholar 

  34. Khalil, H.: Nonlinear Systems. Prentice Hall, New York (2002)

    MATH  Google Scholar 

  35. Utkin, V.I., Guldner, J., Jingxin, S.: Sliding Mode Control in Electromechanical Systems. Taylor & Francis, London (2002)

    Google Scholar 

  36. Vincent, T.L., Yu, J.: Control of a chaotic system. Dyn. Control 1(1), 35–52 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  37. Yang, S.K., Chen, C.L., Yau, H.T.: Control of chaos in Lorenz system. Chaos Solitons Fractals 13(4), 767–780 (2002)

    Article  MATH  Google Scholar 

  38. Ehrhard, P., Muller, U.: Dynamical behaviour of natural convection in a single-phase loop. J. Fluid Mech. 217, 487–518 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the MKE (The Ministry of Knowledge Economy), Korea, under the “IT Consilience Creative Program” support program supervised by the NIPA (National IT Industry Promotion Agency)(C1515-1121-0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maolin Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, Sj., Jin, M., Kuc, TY. et al. Control and synchronization of chaos systems using time-delay estimation and supervising switching control. Nonlinear Dyn 75, 549–560 (2014). https://doi.org/10.1007/s11071-013-1084-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-1084-4

Keywords

Navigation