Skip to main content
Log in

Neural control of hypersonic flight vehicle model via time-scale decomposition with throttle setting constraint

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Considering the use of digital computers and samplers in the control circuitry, this paper describes the controller design in discrete time for the longitudinal dynamics of a generic hypersonic flight vehicle (HFV) with Neural Network (NN). Motivated by time-scale decomposition, the states are decomposed into slow dynamics of velocity, altitude and fast dynamics of attitude angles. By command transformation, the reference command for γθ p q subsystem is derived from hγ subsystem. Furthermore, to simplify the backstepping design, we propose the controller for γθ p q subsystem from prediction function without virtual controller. For the velocity subsystem, the throttle setting constraint is considered and new NN adaption law is designed by auxiliary error dynamics. The uniformly ultimately boundedness (UUB) of the system is proved by Lyapunov stability method. Simulation results show the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ataei, A., Wang, Q.: Nonlinear control of an uncertain hypersonic aircraft model using robust sum-of-squares method. IET Control Theory Appl. 6(2), 203–215 (2012)

    Article  MathSciNet  Google Scholar 

  2. Buschek, H., Calise, A.: Uncertainty modeling and fixed-order controller design for a hypersonic vehicle model. J. Guid. Control Dyn. 20(1), 42–48 (1997)

    Article  Google Scholar 

  3. Chaudhuri, A., Bhat, S.: Output feedback-based discrete-time sliding-mode controller design for model aircraft. J. Guid. Control Dyn. 28(1), 177–181 (2005)

    Article  Google Scholar 

  4. Chen, M., Ge, S., How, B.: Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Trans. Neural Netw. 21(5), 796–812 (2010)

    Article  Google Scholar 

  5. Chen, M., Ge, S., Ren, B.: Robust attitude control of helicopters with actuator dynamics using neural networks. IET Control Theory Appl. 4(12), 2837–2854 (2010)

    Article  MathSciNet  Google Scholar 

  6. Chen, M., Jiang, B.: Robust attitude control of near space vehicles with time-varying disturbances. Int. J. Control. Autom. Syst. 11(1), 182–187 (2013)

    Article  Google Scholar 

  7. Chen, M., Jiang, C.S., Wu, Q.X.: Disturbance-observer-based robust flight control for hypersonic vehicles using neural networks. Adv. Sci. Lett. 4(4–5), 4–5 (2011)

    Google Scholar 

  8. Gao, D., Sun, Z.: Fuzzy tracking control design for hypersonic vehicles via T-S model. Sci. China, Inf. Sci. 54(3), 521–528 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao, D., Sun, Z., Du, T.: Dynamic surface control for hypersonic aircraft using fuzzy logic system. In: IEEE International Conference on Automation and Logistics, Jinan, China, pp. 2314–2319. IEEE Press, New York (2007)

    Chapter  Google Scholar 

  10. Gao, D., Sun, Z., Luo, X., Du, T.: Fuzzy adaptive control for hypersonic vehicle via backstepping method. IET Control Theory Appl. 25(5), 805–810 (2008)

    Google Scholar 

  11. He, P., Jagannathan, S.: Reinforcement learning-based output feedback control of nonlinear systems with input constraints. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 35(1), 150–154 (2005)

    Article  Google Scholar 

  12. He, P., Jagannathan, S.: Reinforcement learning neural-network-based controller for nonlinear discrete-time systems with input constraints. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 37(2), 425–436 (2007)

    Article  Google Scholar 

  13. Janardhanan, S., Bandyopadhyay, B.: Multirate output feedback based robust quasi-sliding mode control of discrete-time systems. IEEE Trans. Autom. Control 52(3), 499–503 (2007)

    Article  MathSciNet  Google Scholar 

  14. Mareels, I., Penfold, H., Evans, R.: Controlling nonlinear time-varying systems via Euler approximations. Automatica 28(4), 681–696 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nešić, D., Teel, A.: Stabilization of sampled-data nonlinear systems via backstepping on their Euler approximate model. Automatica 42(10), 1801–1808 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pan, Y., Er, M., Huang, D., Wang, Q.: Adaptive fuzzy control with guaranteed convergence of optimal approximation error. IEEE Trans. Fuzzy Syst. 19(5), 807–818 (2011)

    Article  Google Scholar 

  17. Stengel, R., Broussard, J., Berry, P.: Digital controllers for VTOL aircraft. IEEE Trans. Aerosp. Electron. Syst. 1, 54–63 (1978)

    Article  Google Scholar 

  18. Xu, B., Gao, D., Wang, S.: Adaptive neural control based on HGO for hypersonic flight vehicles. Sci. China, Inf. Sci. 54(3), 511–520 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu, B., Huang, X., Wang, D., Sun, F.: Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation. Asian J. Control (2013). doi:10.1002/asjc.679

    Google Scholar 

  20. Xu, B., Sun, F., Liu, H., Ren, J.: Adaptive kriging controller design for hypersonic flight vehicle via back-stepping. IET Control Theory Appl. 6(4), 487–497 (2012)

    Article  MathSciNet  Google Scholar 

  21. Xu, B., Sun, F., Yang, C., Gao, D., Ren, J.: Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping. Int. J. Control 84(9), 1543–1552 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu, B., Wang, D., Sun, F., Shi, Z.: Direct neural discrete control of hypersonic flight vehicle. Nonlinear Dyn. 70(1), 269–278 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu, H., Mirmirani, M., Ioannou, P.: Adaptive sliding mode control design for a hypersonic flight vehicle. J. Guid. Control Dyn. 27(5), 829–838 (2004)

    Article  Google Scholar 

  24. Yang, C., Ge, S., Xiang, C., Chai, T., Lee, T.: Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach. IEEE Trans. Neural Netw. 19(11), 1873–1886 (2008)

    Article  Google Scholar 

  25. Yang, C., Ge, S.S., Lee, T.H.: Output feedback adaptive control of a class of nonlinear discrete-time systems with unknown control directions. Automatica 45(1), 270–276 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, C., Li, J., Li, Z.: Optimized adaptive control design and NN based trajectory planning for a class of wheeled inverted pendulum vehicle models. IEEE Trans. Syst. Man Cybern. 43(1), 24–36 (2013)

    Google Scholar 

  27. Yang, C., Li, Y., Ge, S., Lee, T.: Adaptive control of a class of discrete-time MIMO nonlinear systems with uncertain couplings. Int. J. Control 83(10), 2120–2133 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the DSO National Laboratories of Singapore through a Strategic Project Grant (Project No. DSOCL10004), National Science Foundation of China (Grant No. 61134004, 61005085), NWPU Basic Research Funding (Grant No. JC20120236) and Fundamental Research Funds for the Central Universities (2012QNA4024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xu.

Appendices

Appendix A: Hypersonic aircraft model description

The related definitions of the HFV dynamics in [23] are given as: r=h+R E , \(\bar{q}=\frac{1}{2}\rho V^{2}\), \(L = \bar{q}SC_{L}\), \(D =\nobreak \bar{q} SC_{D}\), \(T = \bar{q}SC_{T}\), \(M_{yy} = \bar{q} S\bar{c} [C_{M} (\alpha) + C_{M} (\delta e) + C_{M} (q) ]\), C L =0.6203α, C D =0.6450α 2+0.0043378α+0.003772, C M (α)=−0.035α 2+0.036617α+5.3261×10−6, \(C_{M} (q) = (\bar{c}/2V)\*q( - 6.796\alpha^{2} + 0.3015\alpha - 0.2289)\).

The control-input-related definition is as

where ρ denotes the air density, S is the reference area, \(\bar{c}\) is the reference length and R E is the radius of the Earth. C x , x=L,D,T,M are the force and moment coefficients.

Appendix B: Definition for nonlinear functions f i and g i , i=1,2,3,V

\({f_{1}} = - ( {\mu - {V^{2}}r} )\cos\gamma/({V{r^{2}}})-0.6203\bar{q}S\gamma/(mV)\), \({g_{1}} = 0.6203\bar{q}S/(mV)\), f 2=0, g 2=1, \({f_{3}} = \bar{q}S\bar{c}[ {C_{M}}( \alpha ) + {C_{M}}( q ) - 0.0292\alpha]/{I_{yy}}\), \({g_{3}} = {0.0292\bar{q}S\bar{c}}/I_{yy}\).

If β>1, \({f_{V}} = -(D/m + \mu\sin\gamma/r^{2})+ 0.0224\bar{q}S \cos \alpha/m \), \(g_{V}=0.00336\bar{q} S \cos\alpha/m\). Otherwise f V =−(D/m+μsinγ/r 2), \(g_{V}= 0.02576\bar{q} S\cos\alpha/m\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, B., Shi, Z., Yang, C. et al. Neural control of hypersonic flight vehicle model via time-scale decomposition with throttle setting constraint. Nonlinear Dyn 73, 1849–1861 (2013). https://doi.org/10.1007/s11071-013-0908-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0908-6

Keywords

Navigation