Skip to main content
Log in

The codimension-two bifurcation for the recent proposed SD oscillator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the complicated nonlinear dynamics at the equilibria of SD oscillator, which exhibits both smooth and discontinuous dynamics depending on the value of a parameter α, are investigated. It is found that SD oscillator admits codimension-two bifurcation at the trivial equilibrium when α=1. The universal unfolding for the codimension-two bifurcation is also found to be equivalent to the damped SD oscillator with nonlinear viscous damping. Based on this equivalence between the universal unfolding and the damped system, the bifurcation diagram and the corresponding codimension-two bifurcation structures near the trivial equilibrium are obtained and presented for the damped SD oscillator as the perturbation parameters vary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Geometric Methods in the Theory of Ordinary Differential Equations, 2nd edn. Springer, York New (1988)

    Google Scholar 

  2. Horozov, E.: Versal deformation of equivariant vector fields in the case of symmetry of order 2 and 3. Trans. Petrovski Semin. 5, 163–192 (1979) (in Russian)

    MathSciNet  Google Scholar 

  3. Han, M.A.: Global behavior of limit cycles in rotated vector fields. J. Differ. Equ. 151(1), 20–35 (1999)

    Article  MATH  Google Scholar 

  4. Holmes, P.J.: Bifurcation to divergence and flutter in flow-induced oscillations: a finite dimensional analysis. J. Sound Vib. 53, 471–503 (1977)

    Article  MATH  Google Scholar 

  5. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations Vector Fields. Springer, New York (1997)

    Google Scholar 

  6. Gao, G.S., Yang, S.P., Chen, E.L., Guo, J.B.: One local bifurcation of nonlinear system based on magnetorheological damper. Acta Mech. Sin. 36(5), 564–568 (2004) (in Chinese)

    Google Scholar 

  7. Yagasaki, K.: Codimension-two bifurcations in a pendulum with feedback control. Int. J. Non-Linear Mech. 34, 983–1002 (1999)

    Article  MathSciNet  Google Scholar 

  8. Fatimah, S., Ruijgrok, M.: Bifurcation in an autoparametric system in 1:1 internal resonance with parametric excitation. Int. J. Non-Linear Mech. 37, 297–308 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Yang, S.P., Hu, G., Xu, S.S.: Codimension-two two-hard-mode bifurcation and coexistence of multiple attractors in a two-photon laser with an injected signal. Phys. Rev. A 49, 3966–3972 (1994)

    Article  Google Scholar 

  10. Ashwin, P., Aston, P.J.: Blowout bifurcations of codimension two. Phys. Lett. A 244(4), 261–270 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Duan, L.X., Lu, Q.S.: Codimension-two bifurcation analysis on firing activities in Chay neuron model. Chaos, Solitons Fractals 30(5), 1172–1179 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Pellegrini, L., Possio, C.T.: A non-ideal CSTR: a high-codimension bifurcation analysis. Chem. Eng. Sci. 51(11), 3151–3156 (1996)

    Article  Google Scholar 

  13. Peng, M., Huang, L., Wang, G.: Higher-codimension bifurcations in a discrete unidirectional neural network model with delayed feedback. Chaos 18(2), 023105 (2008)

    Article  MathSciNet  Google Scholar 

  14. Cao, Q.J., Wiercigroch, M., Pavlovskaia, E.E., Thompson, J.M.T., Grebogi, C.: Archetypal oscillator for smooth and discontinuous dynamics. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 74(4), 046218 (2006)

    MathSciNet  Google Scholar 

  15. Cao, Q.J., Wiercigroch, M., Pavlovskaia, E.E., Thompson, J.M.T., Grebogi, C.: Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 366(1865), 635–652 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cao, Q.J., Wiercigroch, M., Pavlovskaia, E.E., Grebogi, C., Thompson, J.M.T.: The limit case response of the archetypal oscillator for smooth and discontinuous dynamics. Int. J. Non-Linear Mech. 43, 462–473 (2008)

    Article  Google Scholar 

  17. Cao, Q.J., Wiercigroch, M., Pavlovskaia, E.E., Thompson, J.M.T., Grebogi, C.: SD oscillator, the attractor and their applications. J. Vib. Eng. 20(5), 454–458 (2007)

    Google Scholar 

  18. Cao, Q.J., Wiercigroch, M., Pavlovskaia, E.E., Thompson, J.M.T., Grebogi, C.: Advances in the study on the SD oscillators. Sci. Technol. Rev. 25(23), 33–37 (2007)

    Google Scholar 

  19. Thompson, J.M.T., Hunt, G.W.: A General Theory of Elastic Stability. Wiley, New York (1973)

    MATH  Google Scholar 

  20. Pippard, A.B.: The elastic arch and its modes of instability. Eur. J. Phys. 11(6), 359–365 (1990)

    Article  Google Scholar 

  21. Savi, M.A., Pacheco, P.M.C.L.: Transient chaos in an elasto-plastic beam with hardening. J. Braz. Soc. Mech. Sci. Eng. 25(2), 189–193 (2003)

    Google Scholar 

  22. Tufillaro, N.B., Reilly, J., Abbott, T.: An Experimental Approach to Nonlinear Dynamics and Chaos. Addison–Wesley, Reading (1992)

    MATH  Google Scholar 

  23. Tufillaro, N.B.: Nonlinear and chaotic string vibrations. Am. J. Phys. 57(5), 404–414 (1989)

    Article  Google Scholar 

  24. Tufillaro, N.B.: Torsional parametric oscillations in wires. Eur. J. Phys. 11(2), 122–124 (1990)

    Article  Google Scholar 

  25. Mi Bernardo, D., Kowalczyk, P., Nordmark, A.: Sliding bifurcations: a novel mechanism for the sudden onset of chaos in dry friction oscillators. Int. J. Bifurc. Chaos 13(10), 2935–2948 (2003)

    Article  Google Scholar 

  26. Banerjee, S., Grebogi, C.: Border collision bifurcations in two-dimensional piecewise smooth maps. Phys. Rev. E 59(4), 4052–4061 (1999)

    Article  Google Scholar 

  27. Leine, R.I., van Campen, D.H.: Discontinuous fold bifurcations. Syst. Anal. Modell. Simul. 43(3), 321–332 (2003)

    Article  MATH  Google Scholar 

  28. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)

    MATH  Google Scholar 

  29. Holmes, P.J., Marsden, J.E.: Bifurcations to divergence and flutter in flow induced oscillations: an infinite dimensional analysis. Automatica 14, 367–384 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hopf, E.: Abzweigung einer periodischer Lösung von einer stationaren Lösung eines Differentialsystems. Ber. Verh. Säch. Akad. Wiss. Leipz. Math.-Nat. 94, 3–22 (1942). English transl. by L.N. Howard and N. Kopell in Marsden and McCracken (1976)

    Google Scholar 

  31. Zhang, W., Yu, P.: A study of the limit cycles associated with a generalized codimension-3 Lienard oscillator. J. Sound Vib. 231(1), 145–173 (2000)

    Article  MathSciNet  Google Scholar 

  32. Carr, J.: Applications of Center Manifold Theory. Applied Mathematical Sciences, vol. 35. Springer, New York (1981)

    Google Scholar 

  33. Golubitsky, M., Schaeffer, D.G., Stewart, I.: Singularities and Groups in Bifurcation Theory, vol. I. Springer, New York (1985)

    MATH  Google Scholar 

  34. Alexander, J.C., Yorke, J.: Global bifurcations of periodic orbits. Am. J. Math. 100, 263–292 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  35. Hermann, G.: Stability of equilibrium of elastic systems subjected to nonconservative forces. Appl. Mech. Rev. 20, 103–108 (1967)

    MathSciNet  Google Scholar 

  36. Chen, Y.S., Liung, A.Y.T.: Bifurcations and Chaos in Engineering. Springer, New York (1998)

    Google Scholar 

  37. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjie Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, R., Cao, Q. & Yang, S. The codimension-two bifurcation for the recent proposed SD oscillator. Nonlinear Dyn 59, 19–27 (2010). https://doi.org/10.1007/s11071-009-9517-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9517-9

Keywords

Navigation