Skip to main content
Log in

Morin Mitigates Chronic Constriction Injury (CCI)-Induced Peripheral Neuropathy by Inhibiting Oxidative Stress Induced PARP Over-Activation and Neuroinflammation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuropathic pain is initiated or caused due to the primary lesion or dysfunction in the nervous system and is proposed to be linked to a cascade of events including excitotoxicity, oxidative stress, neuroinflammation and apoptosis. Oxidative/nitrosative stress aggravates the neuroinflammation and neurodegeneration through poly (ADP) ribose polymerase (PARP) overactivation. Hence, the present study investigated the antioxidant and anti-inflammatory effects of the phytoconstituent; morin in chronic constriction injury (CCI) induced neuropathy. Neuropathic pain was induced by chronic constriction of the left sciatic nerve in rats, and the effect of morin (15 and 30 mg/kg, p.o.) was evaluated by measuring behavioural and biochemical changes. Mechanical, chemical and thermal stimuli confirmed the CCI-induced neuropathic pain and treatment with morin significantly improved these behavioural deficits and improved the sciatic functional index by the 14th day after CCI induction. After 14 days of CCI induction, oxidative/nitrosative stress and inflammatory markers were elevated in rat lumbar spinal cord. Oxidative stress induced PARP overactivation resulted in depleted levels of ATP and elevated levels of poly (ADP) ribose (PAR). Treatment with morin reduced the levels of nitrites, restored glutathione levels and abrogated the oxidant induced DNA damage. It also mitigated the increased levels of TNF-α and IL-6. Protein expression studies confirmed the PARP inhibition and anti-inflammatory activity of morin. Findings of this study suggest that morin, by virtue of its antioxidant properties, limited PARP overactivation and neuroinflammation and protected against CCI induced functional, behavioural and biochemical deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Campbell JN, Meyer RA (2006) Mechanisms of neuropathic pain. Neuron 52:77–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bridges D, Thompson SWN, Rice ASC (2001) Mechanisms of neuropathic pain. Br J Anaesth 87:12–26

    Article  CAS  PubMed  Google Scholar 

  3. Baron R, Binder A, Wasner G (2010) Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 9:807–819

    Article  PubMed  Google Scholar 

  4. Dworkin RH, Backonja M, Rowbotham MC, Allen RR, Argoff CR, Bennett GJ, Bushnell MC, Farrar JT, Galer BS, Haythornthwaite JA (2003) Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations. Arch Neurol 60:1524–1534

    Article  PubMed  Google Scholar 

  5. Finnerup NB, SrH Sindrup, Jensen TS (2010) The evidence for pharmacological treatment of neuropathic pain. Pain 150:573–581

    Article  PubMed  Google Scholar 

  6. Salvemini D, Little JW, Doyle T, Neumann WL (2011) Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 51:951–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sommer C, Kress M (2004) Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett 361:184–187

    Article  CAS  PubMed  Google Scholar 

  8. Lee KM, Kang BS, Lee HL, Son SJ, Hwang SH, Kim DS, Park JS, Cho HJ (2004) Spinal NF-kB activation induces COX-2 upregulation and contributes to inflammatory pain hypersensitivity. Eur J Neurosci 19:3375–3381

    Article  PubMed  Google Scholar 

  9. Choi DC, Lee JY, Lim EJ, Baik HH, Oh TH, Yune TY (2012) Inhibition of ROS-induced p38MAPK and ERK activation in microglia by acupuncture relieves neuropathic pain after spinal cord injury in rats. Exp Neurol 236:268–282

    Article  CAS  PubMed  Google Scholar 

  10. Goecks CSB, Horst A, Moraes MS, Scheid T, Kolberg C, Bell-Klein A, Partata WA (2012) Assessment of oxidative parameters in rat spinal cord after chronic constriction of the sciatic nerve. Neurochem Res 37:1952–1958

    Article  CAS  PubMed  Google Scholar 

  11. Sandireddy R, Yerra VG, Komirishetti P, Areti A, Kumar A (2015) Fisetin imparts neuroprotection in experimental diabetic neuropathy by modulating Nrf2 and NF-kB pathways. Cell Mol Neurobiol. doi:10.1007/s10571-015-0272-9

  12. Du L, Zhang X, Han YY, Burke NA, Kochanek PM, Watkins SC, Graham SH, Carcillo JA, Szaba C, Clark RSB (2003) Intra-mitochondrial poly (ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress. J Biol Chem 278:18426–18433

    Article  CAS  PubMed  Google Scholar 

  13. Obrosova IG, Li F, Abatan OI, Forsell MA, Komjati K, Pacher P, Szaba C, Stevens MJ (2004) Role of poly (ADP-ribose) polymerase activation in diabetic neuropathy. Diabetes 53:711–720

    Article  CAS  PubMed  Google Scholar 

  14. Obrosova IG, Xu W, Lyzogubov VV, Ilnytska O, Mashtalir N, Vareniuk I, Pavlov IA, Zhang J, Slusher B, Drel VR (2008) PARP inhibition or gene deficiency counteracts intraepidermal nerve fiber loss and neuropathic pain in advanced diabetic neuropathy. Free Radic Biol Med 44:972–981

    Article  CAS  PubMed  Google Scholar 

  15. Sharma SS, Kumar A, Kaundal RK (2008) Protective effects of 4-amino1, 8-napthalimide, a poly (ADP-ribose) polymerase inhibitor in experimental diabetic neuropathy. Life Sci 82:570–576

    Article  CAS  PubMed  Google Scholar 

  16. Komirishetty P, Areti A, Yerra VG, Ruby PK, Sharma SS, Gogoi R, Sistla R, Kumar A (2016) PARP inhibition attenuates neuroinflammation and oxidative stress in chronic constriction injury induced peripheral neuropathy. Life Sci 150:50–60

    Article  CAS  PubMed  Google Scholar 

  17. Zhu X, Li Q, Chang R, Yang D, Song Z, Guo Q, Huang C (2014) Curcumin alleviates neuropathic pain by inhibiting p300/CBP histone acetyltransferase activity-regulated expression of BDNF and cox-2 in a rat model. PLoS ONE 9:e91303

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xu Y-Q, Jin S-J, Liu N, Li Y-X, Zheng J, Ma L, Du J, Zhou R, Zhao C-J, Niu Y (2014) Aloperine attenuated neuropathic pain induced by chronic constriction injury via anti-oxidation activity and suppression of the nuclear factor kappa B pathway. Biochem Biophys Res Commun 451:568–573

    Article  CAS  PubMed  Google Scholar 

  19. Janzade A, Jameie SB, Choobchian S, Nasirinezhad F (2014) Neuroprotective effect of coenzyme Q10 in chronic constriction injury-induced neuropathic pain in rat. Thrita 3(1):e16607

    Google Scholar 

  20. Naik AK, Tandan SK, Dudhgaonkar SP, Jadhav SH, Kataria M, Prakash VR, Kumar D (2006) Role of oxidative stress in pathophysiology of peripheral neuropathy and modulation by N-acetyl-cysteine in rats. Eur J Pain 10:573

    Article  CAS  PubMed  Google Scholar 

  21. Kapoor R, Kakkar P (2012) Protective role of morin, a flavonoid, against high glucose induced oxidative stress mediated apoptosis in primary rat hepatocytes. PLoS ONE 7:e41663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sreedharan V, Venkatachalam KK, Namasivayam N (2009) Effect of morin on tissue lipid peroxidation and antioxidant status in 1,2-dimethylhydrazine induced experimental colon carcinogenesis. Invest New Drugs 27:21–30

    Article  CAS  PubMed  Google Scholar 

  23. Fang S-H, Hou Y-C, Chang W-C, Hsiu S-L, Chao P-DL, Chiang B-L (2003) Morin sulfates/glucuronides exert anti-inflammatory activity on activated macrophages and decreased the incidence of septic shock. Life Sci 74:743–756

    Article  CAS  PubMed  Google Scholar 

  24. AlSharari SD, Al-Rejaie SS, Abuohashish HM, Aleisa AM, Parmar MY, Ahmed MM (2014) Ameliorative potential of morin in streptozotocin-induced neuropathic pain in rats. Trop J Pharm Res 13:1429–1436

    Article  CAS  Google Scholar 

  25. Ola MS, Aleisa AM, Al-Rejaie SS, Abuohashish HM, Parmar MY, Alhomida AS, Ahmed MM (2014) Flavonoid, morin inhibits oxidative stress, inflammation and enhances neurotrophic support in the brain of streptozotocin-induced diabetic rats. Neurol Sci 35:1003–1008

    Article  PubMed  Google Scholar 

  26. Noor H, Cao P, Raleigh DP (2012) Morin hydrate inhibits amyloid formation by islet amyloid polypeptide and disaggregates amyloid fibers. Protein Sci 21:373–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. MadanKumar P, NaveenKumar P, Manikandan S, Devaraj H, NiranjaliDevaraj S (2014) Morin ameliorates chemically induced liver fibrosis in vivo and inhibits stellate cell proliferation in vitro by suppressing Wnta-catenin signaling. Toxicol Appl Pharmacol 277:210–220

    Article  CAS  PubMed  Google Scholar 

  28. Aleisa AM, Al-Rejaie SS, Abuohashish HM, Ahmed MM, Parmar MY (2013) Nephro-protective role of morin against experimentally induced diabetic nephropathy. Dig J Nanomater Biostructures 8:395–401

    Google Scholar 

  29. Park JY, Kang KA, Kim KC, Cha JW, Kim EH, Hyun JW (2013) Morin induces heme oxygenase-1 via ERK-Nrf2 signaling pathway. J Cancer Prev 18:249

    Article  PubMed  PubMed Central  Google Scholar 

  30. Campos-Esparza MR, Sanchez-Gomez MV, Matute C (2009) Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols. Cell Calcium 45:358–368

    Article  CAS  PubMed  Google Scholar 

  31. Kim JM, Lee EK, Park G, Kim MK, Yokozawa T, Yu BP, Chung HY (2010) Morin modulates the oxidative stress-induced NF-kB pathway through its anti-oxidant activity. Free Radic Res 44:454–461

    Article  CAS  PubMed  Google Scholar 

  32. Geraets L, Moonen HJJ, Brauers K, Wouters EFM, Bast A, Hageman GJ (2007) Dietary flavones and flavonoles are inhibitors of poly (ADP-ribose) polymerase-1 in pulmonary epithelial cells. J Nutr 137:2190–2195

    CAS  PubMed  Google Scholar 

  33. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  CAS  PubMed  Google Scholar 

  34. Varejao ASP, Meek MF, Ferreira AJA, Patrício JAB, Cabrita AMS (2001) Functional evaluation of peripheral nerve regeneration in the rat: walking track analysis. J Neurosci Methods 108:1–9

    Article  CAS  PubMed  Google Scholar 

  35. Huang C, Hu Z-P, Long H, Shi Y-S, Han J-S, Wan Y (2004) Attenuation of mechanical but not thermal hyperalgesia by electroacupuncture with the involvement of opioids in rat model of chronic inflammatory pain. Brain Res Bull 63:99–103

    Article  CAS  PubMed  Google Scholar 

  36. Decosterd I, Buchser E, Gilliard N, Saydoff J, Zurn AD, Aebischer P (1998) Intrathecal implants of bovine chromaffin cells alleviate mechanical allodynia in a rat model of neuropathic pain. Pain 76:159–166

    Article  CAS  PubMed  Google Scholar 

  37. Bardin L, Malfetes N, Newman-Tancredi A, Depoortere R (2009) Chronic restraint stress induces mechanical and cold allodynia, and enhances inflammatory pain in rat: relevance to human stress-associated painful pathologies. Behav Brain Res 205:360–366

    Article  CAS  PubMed  Google Scholar 

  38. Jaggi AS, Singh N (2010) Differential effect of spironolactone in chronic constriction injury and vincristine-induced neuropathic pain in rats. Eur J Pharmacol 648:102–109

    Article  CAS  PubMed  Google Scholar 

  39. Naik AK, Tandan SK, Kumar D, Dudhgaonkar SP (2006) Nitric oxide and its modulators in chronic constriction injury-induced neuropathic pain in rats. Eur J Pharmacol 530:59–69

    Article  CAS  PubMed  Google Scholar 

  40. Sharma SS, Kumar A, Arora M, Kaundal RK (2009) Neuroprotective potential of combination of resveratrol and 4-amino 1,8 naphthalimide in experimental diabetic neuropathy: focus on functional, sensorimotor and biochemical changes. Free Radic Res 43:400–408

    Article  CAS  PubMed  Google Scholar 

  41. Polgar E, Gray S, Riddell JS, Todd AJ (2004) Lack of evidence for significant neuronal loss in laminae I–III of the spinal dorsal horn of the rat in the chronic constriction injury model. Pain 111:144–150

    Article  CAS  PubMed  Google Scholar 

  42. Colleoni M, Sacerdote P (2010) Murine models of human neuropathic pain. Biochim Biophys Acta (BBA) Mol Basis of Dis 1802:924–933

    Article  CAS  Google Scholar 

  43. Saade NE, Jabbur SJ (2008) Nociceptive behavior in animal models for peripheral neuropathy: spinal and supraspinal mechanisms. Prog Neurobiol 86:22–47

    Article  PubMed  Google Scholar 

  44. Wei X-H, Na X-D, Liao G-J, Chen Q-Y, Cui Y, Chen F-Y, Li Y-Y, Zang Y, Liu X-G (2013) The up-regulation of IL-6 in DRG and spinal dorsal horn contributes to neuropathic pain following L5 ventral root transection. Exp Neurol 241:159–168

    Article  CAS  PubMed  Google Scholar 

  45. Siniscalco D, Fuccio C, Giordano C, Ferraraccio F, Palazzo E, Luongo L, Rossi F, Roth KA, Maione S, de Novellis V (2007) Role of reactive oxygen species and spinal cord apoptotic genes in the development of neuropathic pain. Pharmacol Res 55:158–166

    Article  CAS  PubMed  Google Scholar 

  46. Valsecchi AE, Franchi S, Panerai AE, Sacerdote P, Trovato AE, Colleoni M (2008) Genistein, a natural phytoestrogen from soy, relieves neuropathic pain following chronic constriction sciatic nerve injury in mice: anti-inflammatory and antioxidant activity. J Neurochem 107:230–240

    Article  CAS  PubMed  Google Scholar 

  47. Li S-S, Zhang W-S, Ji D, Zhou Y-L, Li H, Yang J-L, Xiong Y-C, Zhang Y-Q, Xu H (2014) Involvement of spinal microglia and interleukin-18 in the anti-nociceptive effect of dexmedetomidine in rats subjected to CCI. Neurosci Lett 560:21–25

    Article  CAS  PubMed  Google Scholar 

  48. Jo D, Chapman CR, Light AR (2009) Glial mechanisms of neuropathic pain and emerging interventions. Korean J Pain 22:1–15

    Article  Google Scholar 

  49. Sandireddy R, Yerra VG, Areti A, Komirishetty P, Kumar A (2014) Neuroinflammation and oxidative stress in diabetic neuropathy: futuristic strategies based on these targets. Int J Endocrinol 2014:674987

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chaitanya GV, Steven AJ, Babu PP (2010) PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 8:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ta LE, Schmelzer JD, Bieber AJ, Loprinzi CL, Sieck GC, Brederson JD, Low PA, Windebank AJ (2013) A novel and selective poly (ADP-ribose) polymerase inhibitor ameliorates chemotherapy-induced painful neuropathy. PLoS ONE 8:e54161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sinha K, Sadhukhan P, Saha S, Pal PB, Sil PC (2015) Morin protects gastric mucosa from nonsteroidal anti-inflammatory drug, indomethacin induced inflammatory damage and apoptosis by modulating NF-kB pathway. Biochim Biophys Acta (BBA) Gen Subj 1850:769–783

    Article  CAS  Google Scholar 

  53. Kumar A, Sharma SS (2010) NF-kB inhibitory action of resveratrol: a probable mechanism of neuroprotection in experimental diabetic neuropathy. Biochem Biophys Res Commun 394:360–365

    Article  CAS  PubMed  Google Scholar 

  54. Negi G, Kumar A, Sharma SS (2011) Nrf2 and NF-kB modulation by sulforaphane counteracts multiple manifestations of diabetic neuropathy in rats and high glucose-induced changes. Curr Neurovascular Res 8:294–304

    Article  CAS  Google Scholar 

  55. Attal N, Filliatreau G, Perrot S, Jazat F, Di Giamberardino L, Guilbaud G (1994) Behavioural pain-related disorders and contribution of the saphenous nerve in crush and chronic constriction injury of the rat sciatic nerve. Pain 59:301–312

    Article  CAS  PubMed  Google Scholar 

  56. Attal N, Jazat F, Kayser V, Guilbaud G (1990) Further evidence for a pain-related behaviours in a model of unilateral peripheral mononeuropathy. Pain 41:235–251

    Article  CAS  PubMed  Google Scholar 

  57. Na HS, Yoon YW, Chung JM (1996) Both motor and sensory abnormalities contribute to changes in foot posture in an experimental rat neuropathic model. Pain 67:173–178

    Article  CAS  PubMed  Google Scholar 

  58. Pathak NN, Balaganur V, Lingaraju MC, Kant V, Latief N, More AS, Kumar D, Kumar D, Tandan SK (2014) Atorvastatin attenuates neuropathic pain in rat neuropathy model by down-regulating oxidative damage at peripheral, spinal and supraspinal levels. Neurochem Int 68:1–9

    Article  CAS  PubMed  Google Scholar 

  59. Muthuraman A, Jaggi AS, Singh N, Singh D (2008) Ameliorative effects of amiloride and pralidoxime in chronic constriction injury and vincristine induced painful neuropathy in rats. Eur J Pharmacol 587:104–111

    Article  CAS  PubMed  Google Scholar 

  60. Choi JI, Kim WM, Lee HG, Kim YO, Yoon MH (2012) Role of neuronal nitric oxide synthase in the antiallodynic effects of intrathecal EGCG in a neuropathic pain rat model. Neurosci Lett 510:53–57

    Article  CAS  PubMed  Google Scholar 

  61. Guedes RP, Dal Bosco L, Teixeira CM, Araujo ASR, Llesuy S, Bello-Klein A, Ribeiro MFM, Partata WA (2006) Neuropathic pain modifies antioxidant activity in rat spinal cord. Neurochem Res 31:603–609

    Article  CAS  PubMed  Google Scholar 

  62. Horst A, Kolberg C, Moraes MS, Riffel APK, Finamor A, Bella Klein A, Pavanato MA, Partata WA (2014) Effect of N-acetylcysteine on the spinal-cord glutathione system and nitric-oxide metabolites in rats with neuropathic pain. Neurosci Lett 569:163–168

    Article  CAS  PubMed  Google Scholar 

  63. Jagtap P, Szaba C (2005) Poly (ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 4:421–440

    Article  CAS  PubMed  Google Scholar 

  64. Areti A, Yerra VG, Naidu VGM, Kumar A (2014) Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biol 2:289–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zimmermann M (2001) Pathobiology of neuropathic pain. Eur J Pharmacol 429:23–37

    Article  CAS  PubMed  Google Scholar 

  66. Di Cesare Mannelli L, Bartolini A, Ghelardini C (2009) Neuropathy-induced apoptosis: protective effect of physostigmine. J Neurosci Res 87:1871–1876

    Article  Google Scholar 

  67. Bruckbauer A, Zemel MB (2014) Synergistic effects of polyphenols and methylxanthines with leucine on AMPK/Sirtuin-mediated metabolism in muscle cells and adipocytes. PLoS ONE 9:e89166

    Article  PubMed  PubMed Central  Google Scholar 

  68. Areti A, Ganesh YV, Komirishetty P, Kumar A (2016) Potential therapeutic benefits of maintaining mitochondrial health in peripheral neuropathies. Curr Neuropharmacol 14:1–16

    Article  Google Scholar 

  69. Xia Y, Liu H, Shen A, Liu Y, Sun L, Tao T, Ke Q, Cheng C (2010) A critical role of SRC-suppressed C kinase substrate in rat astrocytes after chronic constriction injury. Neuromol Med 12:205–216

    Article  CAS  Google Scholar 

  70. Lee K-M, Jeon S-M, Cho H-J (2009) Tumor necrosis factor receptor 1 induces interleukin-6 upregulation through NF-kappaB in a rat neuropathic pain model. Eur J Pain 13:794–806

    Article  CAS  PubMed  Google Scholar 

  71. Zhou Y, Huang X, Wu H, Xu Y, Tao T, Xu G, Cheng C, Cao S (2013) Decreased expression and role of GRK6 in spinal cord of rats after chronic constriction injury. Neurochem Res 38:2168–2179

    Article  CAS  PubMed  Google Scholar 

  72. Muthuraman A, Singh N (2012) Neuroprotective effect of saponin rich extract of Acorus calamus L. in rat model of chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain. J Ethnopharmacol 142:723–731

    Article  CAS  PubMed  Google Scholar 

  73. Barbosa RA, Nunes TL, Nunes TL, Paixao AO, Neto RB, Moura S, Albuquerque RL Jr, Candido EA, Padilha FF, Quintans LJ Jr, Gomes MZ, Cardoso JC (2016) Hydroalcoholic extract of red propolis promotes functional recovery and axon repair after sciatic nerve injury in rats. Pharm Biol 54(6):993–1004

Download references

Acknowledgments

Authors would like to acknowledge Department of Pharmaceuticals, Ministry of Chemical and Fertilizers and NIPER-Hyderabad for their support to carry out the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest associated with this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komirishetty, P., Areti, A., Sistla, R. et al. Morin Mitigates Chronic Constriction Injury (CCI)-Induced Peripheral Neuropathy by Inhibiting Oxidative Stress Induced PARP Over-Activation and Neuroinflammation. Neurochem Res 41, 2029–2042 (2016). https://doi.org/10.1007/s11064-016-1914-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1914-0

Keywords

Navigation