Skip to main content

Advertisement

Log in

Sodium Benzoate, a Metabolite of Cinnamon and a Food Additive, Upregulates Ciliary Neurotrophic Factor in Astrocytes and Oligodendrocytes

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ciliary neurotrophic factor (CNTF) is a promyelinating trophic factor that plays an important role in multiple sclerosis (MS). However, mechanisms by which CNTF expression could be increased in the brain are poorly understood. Recently we have discovered anti-inflammatory and immunomodulatory activities of sodium benzoate (NaB), a metabolite of cinnamon and a widely-used food additive. Here, we delineate that NaB is also capable of increasing the mRNA and protein expression of CNTF in primary mouse astrocytes and oligodendrocytes and primary human astrocytes. Accordingly, oral administration of NaB and cinnamon led to the upregulation of astroglial and oligodendroglial CNTF in vivo in mouse brain. Induction of experimental allergic encephalomyelitis, an animal model of MS, reduced the level of CNTF in the brain, which was restored by oral administration of cinnamon. While investigating underlying mechanisms, we observed that NaB induced the activation of protein kinase A (PKA) and H-89, an inhibitor of PKA, abrogated NaB-induced expression of CNTF. The activation of cAMP response element binding (CREB) protein by NaB, the recruitment of CREB and CREB-binding protein to the CNTF promoter by NaB and the abrogation of NaB-induced expression of CNTF in astrocytes by siRNA knockdown of CREB suggest that NaB increases the expression of CNTF via the activation of CREB. These results highlight a novel myelinogenic property of NaB and cinnamon, which may be of benefit for MS and other demyelinating disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Varon S, Manthorpe M, Adler R (1979) Cholinergic neuronotrophic factors: I. Survival, neurite outgrowth and choline acetyltransferase activity in monolayer cultures from chick embryo ciliary ganglia. Brain Res 173:29–45

    Article  CAS  PubMed  Google Scholar 

  2. Stankoff B, Aigrot MS, Noel F, Wattilliaux A, Zalc B, Lubetzki C (2002) Ciliary neurotrophic factor (CNTF) enhances myelin formation: a novel role for CNTF and CNTF-related molecules. J Neurosci 22:9221–9227

    CAS  PubMed  Google Scholar 

  3. Louis JC, Magal E, Takayama S, Varon S (1993) CNTF protection of oligodendrocytes against natural and tumor necrosis factor-induced death. Science 259:689–692

    Article  CAS  PubMed  Google Scholar 

  4. Barres BA, Schmid R, Sendnter M, Raff MC (1993) Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 118:283–295

    CAS  PubMed  Google Scholar 

  5. Hafler DA, Weiner HL (1989) MS: a CNS and systemic autoimmune disease. Immunol Today 10:104–107

    Article  CAS  PubMed  Google Scholar 

  6. Martin R, McFarland HF, McFarlin DE (1992) Immunological aspects of demyelinating diseases. Annu Rev Immunol 10:153–187

    Article  CAS  PubMed  Google Scholar 

  7. Steinman L (1996) Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85:299–302

    Article  CAS  PubMed  Google Scholar 

  8. Pahan K (2010) Neuroimmune pharmacological control of EAE. J Neuroimmune Pharmacol 5:165–167

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kuhlmann T, Remington L, Cognet I, Bourbonniere L, Zehntner S, Guilhot F, Herman A, Guay-Giroux A, Antel JP, Owens T, Gauchat JF (2006) Continued administration of ciliary neurotrophic factor protects mice from inflammatory pathology in experimental autoimmune encephalomyelitis. Am J Pathol 169:584–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu Z, Hu X, Zhu C, Wang D, Zheng X, Liu Q (2009) Overexpression of CNTF in Mesenchymal Stem Cells reduces demyelination and induces clinical recovery in experimental autoimmune encephalomyelitis mice. J Neuroimmunol 206:58–69

    Article  CAS  PubMed  Google Scholar 

  11. Linker RA, Maurer M, Gaupp S, Martini R, Holtmann B, Giess R, Rieckmann P, Lassmann H, Toyka KV, Sendtner M, Gold R (2002) CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation. Nat Med 8:620–624

    Article  CAS  PubMed  Google Scholar 

  12. Linker RA, Brechlin P, Jesse S, Steinacker P, Lee DH, Asif AR, Jahn O, Tumani H, Gold R, Otto M (2009) Proteome profiling in murine models of multiple sclerosis: identification of stage specific markers and culprits for tissue damage. PLoS One 4:e7624

    Article  PubMed  PubMed Central  Google Scholar 

  13. Giess R, Maurer M, Linker R, Gold R, Warmuth-Metz M, Toyka KV, Sendtner M, Rieckmann P (2002) Association of a null mutation in the CNTF gene with early onset of multiple sclerosis. Arch Neurol 59:407–409

    Article  PubMed  Google Scholar 

  14. Emerich DF, Thanos CG (2006) Intracompartmental delivery of CNTF as therapy for Huntington’s disease and retinitis pigmentosa. Curr Gene Ther 6:147–159

    Article  CAS  PubMed  Google Scholar 

  15. Aebischer P, Schluep M, Deglon N, Joseph JM, Hirt L, Heyd B, Goddard M, Hammang JP, Zurn AD, Kato AC, Regli F, Baetge EE (1996) Intrathecal delivery of CNTF using encapsulated genetically modified xenogeneic cells in amyotrophic lateral sclerosis patients. Nat Med 2:696–699

    Article  CAS  PubMed  Google Scholar 

  16. Gropman AL, Summar M, Leonard JV (2007) Neurological implications of urea cycle disorders. J Inherit Metab Dis 30:865–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scaglia F, Carter S, O’Brien WE, Lee B (2004) Effect of alternative pathway therapy on branched chain amino acid metabolism in urea cycle disorder patients. Mol Genet Metab 81(Suppl 1):S79–S85

    Article  CAS  PubMed  Google Scholar 

  18. Bridges JW, French MR, Smith RL, Williams RT (1970) The fate of benzoic acid in various species. Biochem J 118:47–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kubota K, Ishizaki T (1991) Dose-dependent pharmacokinetics of benzoic acid following oral administration of sodium benzoate to humans. Eur J Clin Pharmacol 41:363–368

    Article  CAS  PubMed  Google Scholar 

  20. Toth B (1984) Lack of tumorigenicity of sodium benzoate in mice. Fundam Appl Toxicol 4:494–496

    Article  CAS  PubMed  Google Scholar 

  21. Brahmachari S, Pahan K (2007) Sodium benzoate, a food additive and a metabolite of cinnamon, modifies T cells at multiple steps and inhibits adoptive transfer of experimental allergic encephalomyelitis. J Immunol 179:275–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mondal S, Pahan K (2015) Cinnamon ameliorates experimental allergic encephalomyelitis in mice via regulatory T cells: implications for multiple sclerosis therapy. PLoS One 10:e0116566

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jana A, Modi KK, Roy A, Anderson JA, van Breemen RB, Pahan K (2013) Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: therapeutic implications for neurodegenerative disorders. J Neuroimmune Pharmacol 8:739–755

    Article  PubMed  PubMed Central  Google Scholar 

  24. Modi KK, Roy A, Brahmachari S, Rangasamy SB, Pahan K (2015) Cinnamon and its metabolite sodium benzoate attenuate the activation of p21rac and protect memory and learning in an animal model of alzheimer’s disease. PLoS One 10:e0130398

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jana M, Pahan K (2013) Down-regulation of myelin gene expression in human oligodendrocytes by nitric oxide: implications for demyelination in multiple sclerosis. J Clin Cell Immunol 4

  26. Ghosh A, Pahan K (2012) Gemfibrozil, a lipid-lowering drug, induces suppressor of cytokine signaling 3 in glial cells: implications for neurodegenerative disorders. J Biol Chem 287:27189–27203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khasnavis S, Jana A, Roy A, Mazumder M, Bhushan B, Wood T, Ghosh S, Watson R, Pahan K (2012) Suppression of nuclear factor-kappaB activation and inflammation in microglia by physically modified saline. J Biol Chem 287:29529–29542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brahmachari S, Fung YK, Pahan K (2006) Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide. J Neurosci 26:4930–4939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jana M, Jana A, Pal U, Pahan K (2007) A simplified method for isolating highly purified neurons, oligodendrocytes, astrocytes, and microglia from the same human fetal brain tissue. Neurochem Res 32:2015–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jana M, Mondal S, Gonzalez FJ, Pahan K (2012) Gemfibrozil, a lipid-lowering drug, increases myelin genes in human oligodendrocytes via peroxisome proliferator-activated receptor-beta. J Biol Chem 287:34134–34148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brahmachari S, Jana A, Pahan K (2009) Sodium benzoate, a metabolite of cinnamon and a food additive, reduces microglial and astroglial inflammatory responses. J Immunol 183:5917–5927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jana A, Pahan K (2010) Fibrillar amyloid-beta-activated human astroglia kill primary human neurons via neutral sphingomyelinase: implications for Alzheimer’s disease. J Neurosci 30:12676–12689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Khasnavis S, Pahan K (2012) Sodium benzoate, a metabolite of cinnamon and a food additive, upregulates neuroprotective Parkinson disease protein DJ-1 in astrocytes and neurons. J Neuroimmune Pharmacol 7:424–435

    Article  PubMed  Google Scholar 

  34. Roy A, Pahan K (2013) Myelin basic protein-primed T helper 2 cells suppress microglial activation via AlphaVBeta3 integrin: implications for multiple sclerosis. J Clin Cell Immunol 7:158

    PubMed  PubMed Central  Google Scholar 

  35. Corbett GT, Roy A, Pahan K (2012) Gemfibrozil, a lipid-lowering drug, upregulates IL-1 receptor antagonist in mouse cortical neurons: implications for neuronal self-defense. J Immunol 189:1002–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ghosh A, Corbett GT, Gonzalez FJ, Pahan K (2012) Gemfibrozil and fenofibrate, FDA-approved lipid-lowering drugs, upregulate tripeptidyl-peptidase 1 in brain cells via peroxisome proliferator-activated receptor-a: implications for late infantile neuronal ceroid lipofuscinosis therapy. J Biol Chem 287:38922–38935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Modi KK, Sendtner M, Pahan K (2013) Up-regulation of ciliary neurotrophic factor in astrocytes by aspirin: implications for remyelination in multiple sclerosis. J Biol Chem 288:18533–18545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ito Y, Wiese S, Funk N, Chittka A, Rossoll W, Bommel H, Watabe K, Wegner M, Sendtner M (2006) Sox10 regulates ciliary neurotrophic factor gene expression in Schwann cells. Proc Natl Acad Sci USA 103:7871–7876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taylor SS, Kim C, Cheng CY, Brown SH, Wu J, Kannan N (2008) Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design. Biochim Biophys Acta 1784:16–26

    Article  CAS  PubMed  Google Scholar 

  40. Kandel ER (2012) The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain 5:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Waltereit R, Weller M (2003) Signaling from cAMP/PKA to MAPK and synaptic plasticity. Mol Neurobiol 27:99–106

    Article  CAS  PubMed  Google Scholar 

  42. Iwasaki Y, Ikeda K, Shiojima T, Kinoshita M (1992) Increased plasma concentrations of aspartate, glutamate and glycine in Parkinson’s disease. Neurosci Lett 145:175–177

    Article  CAS  PubMed  Google Scholar 

  43. Mitch WE, Brusilow S (1982) Benzoate-induced changes in glycine and urea metabolism in patients with chronic renal failure. J Pharmacol Exp Ther 222:572–575

    CAS  PubMed  Google Scholar 

  44. Barkhatova VP, Zavalishin IA, Askarova L, Shavratskii V, Demina EG (1998) Changes in neurotransmitters in multiple sclerosis. Neurosci Behav Physiol 28:341–344

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Institutes of Health Grant (AT6681) and Veteran Affairs Merit Award (I01BX002174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalipada Pahan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modi, K.K., Jana, M., Mondal, S. et al. Sodium Benzoate, a Metabolite of Cinnamon and a Food Additive, Upregulates Ciliary Neurotrophic Factor in Astrocytes and Oligodendrocytes. Neurochem Res 40, 2333–2347 (2015). https://doi.org/10.1007/s11064-015-1723-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1723-x

Keywords

Navigation