Skip to main content

Advertisement

Log in

Evidence that Hyperprolinemia Alters Glutamatergic Homeostasis in Rat Brain: Neuroprotector Effect of Guanosine

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This study investigated the effects of acute and chronic hyperprolinemia on glutamate uptake, as well as some mechanisms underlying the proline effects on glutamatergic system in rat cerebral cortex. The protective role of guanosine on effects mediated by proline was also evaluated. Results showed that acute and chronic hyperprolinemia reduced glutamate uptake, Na+, K+-ATPase activity, ATP levels and increased lipoperoxidation. GLAST and GLT-1 immunocontent were increased in acute, but not in chronic hyperprolinemic rats. Our data suggest that the effects of proline on glutamate uptake may be mediated by lipid peroxidation and disruption of Na+, K+-ATPase activity, but not by decreasing in glutamate transporters. This probably induces excitotoxicity and subsequent energy deficit. Guanosine was effective to prevent most of the effects promoted by proline, reinforcing its modulator role in counteracting the glutamate toxicity. However, further studies are needed to assess the modulatory effects of guanosine on experimental hyperprolinemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Phang JM, Hu CA, Valle D (2001) Disorders of proline and hydroxyproline metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1821–1838

    Google Scholar 

  2. Wyse AT, Netto CA (2011) Behavioral and neurochemical effects of proline. Metab Brain Dis 26:159–172

    Article  PubMed  CAS  Google Scholar 

  3. Flynn MP, Martin MC, Moore PT et al (1989) Type II hyperprolinaemia in a pedigree of Irish travellers (nomads). Arch Dis Child 64:1699–1707

    Article  PubMed  CAS  Google Scholar 

  4. Van Harreveld A, Fifkova E (1973) Effects of amino acids on the isolated chicken retina, and on its response to glutamate stimulation. J Neurochem 20:947–962

    Article  PubMed  Google Scholar 

  5. Rhoads DE, Peterson NA, Raghupathy E (1983) Selective inhibition of synaptosomal proline uptake by leucine and methionine enkephalins. J Biol Chem 258:12233–12237

    PubMed  CAS  Google Scholar 

  6. Cohen SM, Nadler JV (1997) Proline-induced potentiation of glutamate transmission. Brain Res 761:271–282

    Article  PubMed  CAS  Google Scholar 

  7. Nadler JV (1987) Sodium-dependent proline uptake in the rat hippocampal formation: association with ipsilateral-commissural projections of CA3 pyramidal cells. J Neurochem 49:1155–1160

    Article  PubMed  CAS  Google Scholar 

  8. Nadler JV, Bray SD, Evenson DA (1992) Autoradiographic localization of proline uptake in excitatory hippocampal pathways. Hippocampus 2:269–278

    Article  PubMed  CAS  Google Scholar 

  9. Fremeau RT Jr, Caron MG, Blakely RD (1992) Molecular cloning and expression of a high affinity l-proline transporter expressed in putative glutamatergic pathways of rat brain. Neuron 8:915–926

    Article  PubMed  CAS  Google Scholar 

  10. Delwing D, Sanna RJ, Wofchuk S et al (2007) Proline promotes decrease in glutamate uptake in slices of cerebral cortex and hippocampus of rats. Life Sci 81:1645–1650

    Article  PubMed  CAS  Google Scholar 

  11. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  12. Segovia G, Porras A, Del Arco A et al (2001) Glutamatergic neurotransmission in aging: a critical perspective. Mech Ageing Dev 122:1–29

    Article  PubMed  CAS  Google Scholar 

  13. Nicholls DG (2008) Oxidative stress and energy crises in neuronal dysfunction. Ann N Y Acad Sci 1147:53–60

    Article  PubMed  CAS  Google Scholar 

  14. Maragakis NJ, Rothstein JD (2001) Glutamate transporters in neurologic disease. Arch Neurol 58:365–370

    Article  PubMed  CAS  Google Scholar 

  15. Maragakis NJ, Rothstein JD (2004) Glutamate transporters: animal models to neurologic disease. Neurobiol Dis 15:461–473

    Article  PubMed  CAS  Google Scholar 

  16. Meldrum BS (1994) The role of glutamate in epilepsy and other CNS disorders. Neurology 44:14–23

    Google Scholar 

  17. Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14

    Article  PubMed  CAS  Google Scholar 

  18. Attwell D (2000) Brain uptake of glutamate: food for thought. J Nutr 130:1023–1025

    Google Scholar 

  19. Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355

    Article  PubMed  CAS  Google Scholar 

  20. Rose EM, Koo JC, Antflick JE et al (2009) Glutamate transporter coupling to Na, K-ATPase. J Neurosci 29:8143–8155

    Article  PubMed  CAS  Google Scholar 

  21. Mobasheri A, Avila J, Cozar-Castellano I et al (2000) Na+, K+-ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci Rep 20:51–91

    Article  PubMed  CAS  Google Scholar 

  22. Kaplan JH (2002) Biochemistry of Na+, K+-ATPase. Annu Rev Biochem 71:511–535

    Article  PubMed  CAS  Google Scholar 

  23. Dencher NA, Frenzel M, Reifschneider NH et al (2007) Proteome alterations in rat mitochondria caused by aging. Ann N Y Acad Sci 1100:291–298

    Article  PubMed  CAS  Google Scholar 

  24. Erecinska M, Cherian S, Silver IA (2004) Energy metabolism in mammalian brain during development. Prog Neurobiol 73:397–445

    Article  PubMed  CAS  Google Scholar 

  25. Siems WG, Hapner SJ, van Kuijk FJ (1996) 4-hydroxynonenal inhibits Na+, K+-ATPase. Free Radic Biol Med 20:215–223

    Article  PubMed  CAS  Google Scholar 

  26. Potts MB, Koh SE, Whetstone WD et al (2006) Traumatic injury to the immature brain: inflammation, oxidative injury, and iron-mediated damage as potential therapeutic targets. NeuroRx 3:143–153

    Article  PubMed  CAS  Google Scholar 

  27. Pontes ZE, Oliveira LS, Bavaresco CS et al (1999) Proline administration decreases Na+, K+-ATPase activity in the synaptic plasma membrane from cerebral cortex of rats. Metab Brain Dis 14:265–272

    Article  PubMed  CAS  Google Scholar 

  28. Ferreira AG, Stefanello FM, Cunha AA et al (2011) Role of antioxidants on Na+, K+-ATPase activity and gene expression in cerebral cortex of hyperprolinemic rats. Metab Brain Dis 26:141–147

    Article  PubMed  CAS  Google Scholar 

  29. Delwing D, Bavaresco CS, Chiarani F et al (2003) In vivo and in vitro effects of proline on some parameters of oxidative stress in rat brain. Brain Res 991:180–186

    Article  PubMed  CAS  Google Scholar 

  30. Delwing D, Bavaresco CS, Wannmacher CM et al (2003) Proline induces oxidative stress in cerebral cortex of rats. Int J Dev Neurosci 21:105–110

    Article  PubMed  CAS  Google Scholar 

  31. Schmidt AP, Tort AB, Silveira PP et al (2009) The NMDA antagonist MK-801 induces hyperalgesia and increases CSF excitatory amino acids in rats: reversal by guanosine. Pharmacol Biochem Behav 91:549–553

    Article  PubMed  CAS  Google Scholar 

  32. Schmidt AP, Lara DR, Maraschin JF et al (2000) Guanosine and GMP prevent seizures induced by quinolinic acid in mice. Brain Res 864:40–43

    Article  PubMed  CAS  Google Scholar 

  33. Lara DR, Schmidt AP, Frizzo ME et al (2001) Effect of orally administered guanosine on seizures and death induced by glutamatergic agents. Brain Res 912:176–180

    Article  PubMed  CAS  Google Scholar 

  34. Chang R, Algird A, Bau C et al (2008) Neuroprotective effects of guanosine on stroke models in vitro and in vivo. Neurosci Lett 431:101–105

    Article  PubMed  CAS  Google Scholar 

  35. Frizzo ME, Soares FA, Dall’Onder LP et al (2003) Extracellular conversion of guanine-based purines to guanosine specifically enhances astrocyte glutamate uptake. Brain Res 972:84–89

    Article  PubMed  CAS  Google Scholar 

  36. Dal-Cim T, Martins WC, Santos AR et al (2011) Guanosine is neuroprotective against oxygen/glucose deprivation in hippocampal slices via large conductance Ca2+-activated K+ channels, phosphatidilinositol-3 kinase/protein kinase B pathway activation and glutamate uptake. Neuroscience 183:212–220

    Article  PubMed  CAS  Google Scholar 

  37. Jiang S, Fischione G, Giuliani P et al (2008) Metabolism and distribution of guanosine given intraperitoneally: implications for spinal cord injury. Nucleosides Nucleotides Nucleic Acids 27:673–680

    Article  PubMed  CAS  Google Scholar 

  38. Moreira JC, Wannmacher CM, Costa SM et al (1989) Effect of proline administration on rat behavior in aversive and nonaversive tasks. Pharmacol Biochem Behav 32:885–890

    Article  PubMed  CAS  Google Scholar 

  39. Frizzo ME, Lara DR, Prokopiuk Ade S et al (2002) Guanosine enhances glutamate uptake in brain cortical slices at normal and excitotoxic conditions. Cell Mol Neurobiol 22:353–363

    Article  PubMed  CAS  Google Scholar 

  40. Wyse ATS, Streck EL, Worm P et al (2000) Preconditioning prevents the inhibition of Na+, K+-ATPase activity after brain ischemia. Neurochem Res 25:971–975

    Article  CAS  Google Scholar 

  41. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380

    Article  PubMed  CAS  Google Scholar 

  42. Witt KA, Mark KS, Hom S et al (2003) Effects of hypoxia-reoxygenation on rat blood-brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol 285:H2820–H2831

    PubMed  CAS  Google Scholar 

  43. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  44. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  45. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  PubMed  CAS  Google Scholar 

  46. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  47. Greenwood SM, Connolly CN (2007) Dendritic and mitochondrial changes during glutamate excitotoxicity. Neuropharmacology 53:891–898

    Article  PubMed  CAS  Google Scholar 

  48. Greenwood SM, Mizielinska SM, Frenguelli BG et al (2007) Mitochondrial dysfunction and dendritic beading during neuronal toxicity. J Biol Chem 282:26235–26244

    Article  PubMed  CAS  Google Scholar 

  49. Delwing D, Chiarani F, Kurek AG et al (2007) Proline reduces brain cytochrome c oxidase: prevention by antioxidants. Int J Dev Neurosci 25:17–22

    Article  PubMed  CAS  Google Scholar 

  50. Blanc EM, Keller JN, Fernandez S et al (1998) 4-hydroxynonenal, a lipid peroxidation product, impairs glutamate transport in cortical astrocytes. Glia 22:149–160

    Article  PubMed  CAS  Google Scholar 

  51. Pedersen WA, Cashman NR, Mattson MP (1999) The lipid peroxidation product 4-hydroxynonenal impairs glutamate and glucose transport and choline acetyltransferase activity in NSC-19 motor neuron cells. Exp Neurol 155:1–10

    Article  PubMed  CAS  Google Scholar 

  52. Ferreira AG, Lima DD, Delwing D et al (2010) Proline impairs energy metabolism in cerebral cortex of young rats. Metab Brain Dis 25:161–168

    Article  PubMed  CAS  Google Scholar 

  53. Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    Article  PubMed  CAS  Google Scholar 

  54. Roos DH, Puntel RL, Santos MM et al (2009) Guanosine and synthetic organoselenium compounds modulate methylmercury-induced oxidative stress in rat brain cortical slices: involvement of oxidative stress and glutamatergic system. Toxicol In Vitro 23:302–307

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Brazil) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela T. S. Wyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, A.G.K., da Cunha, A.A., Scherer, E.B. et al. Evidence that Hyperprolinemia Alters Glutamatergic Homeostasis in Rat Brain: Neuroprotector Effect of Guanosine. Neurochem Res 37, 205–213 (2012). https://doi.org/10.1007/s11064-011-0604-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0604-1

Keywords

Navigation