Skip to main content

Advertisement

Log in

Antioxidant Effects of Different Extracts from Melissa officinalis, Matricaria recutita and Cymbopogon citratus

Neurochemical Research Aims and scope Submit manuscript

Abstract

Considering the important role of oxidative stress in the pathogenesis of several neurological diseases, and the growing evidence of the presence of compounds with antioxidant properties in the plant extracts, the aim of the present study was to investigate the antioxidant capacity of three plants used in Brazil to treat neurological disorders: Melissa officinalis, Matricaria recutita and Cymbopogon citratus. The antioxidant effect of phenolic compounds commonly found in plant extracts, namely, quercetin, gallic acid, quercitrin and rutin was also examined for comparative purposes. Cerebral lipid peroxidation (assessed by TBARS) was induced by iron sulfate (10 μM), sodium nitroprusside (5 μM) or 3-nitropropionic acid (2 mM). Free radical scavenger properties and the chemical composition of plant extracts were assessed by 1′-1′ Diphenyl-2′ picrylhydrazyl (DPPH) method and by Thin Layer Chromatography (TLC), respectively. M. officinalis aqueous extract caused the highest decrease in TBARS production induced by all tested pro-oxidants. In the DPPH assay, M. officinalis presented also the best antioxidant effect, but, in this case, the antioxidant potencies were similar for the aqueous, methanolic and ethanolic extracts. Among the purified compounds, quercetin had the highest antioxidant activity followed by gallic acid, quercitrin and rutin. In this work, we have demonstrated that the plant extracts could protect against oxidative damage induced by various pro-oxidant agents that induce lipid peroxidation by different process. Thus, plant extracts could inhibit the generation of early chemical reactive species that subsequently initiate lipid peroxidation or, alternatively, they could block a common final pathway in the process of polyunsaturated fatty acids peroxidation. Our study indicates that M. officinalis could be considered an effective agent in the prevention of various neurological diseases associated with oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Frei B (1994) Reactive oxygen species and antioxidant vitamins: mechanisms of action. Am J Med 97:5S–13S

    Article  PubMed  CAS  Google Scholar 

  2. Silva CG, Herdeiro RS, Mathias CJ, Panek AD, Silveira CS, Rodrigues VP, Rennó MN, Falcão DQ, Cerqueira DM, Minto ABM (2005) Evaluation of antioxidant activity of Brazilian plants. Pharm Res 52:229–233

    Article  CAS  Google Scholar 

  3. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  PubMed  CAS  Google Scholar 

  4. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56

    Article  PubMed  CAS  Google Scholar 

  5. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  6. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  PubMed  CAS  Google Scholar 

  7. Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106

    Article  PubMed  CAS  Google Scholar 

  8. Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40:959–975

    Article  PubMed  CAS  Google Scholar 

  9. Bastianetto S, Quirion R (2002) Natural extracts as possible protective agents of brain aging. Neurobiol Aging 23:891–897

    Article  PubMed  CAS  Google Scholar 

  10. Ávila DS, Gubert P, Palma A, Colle D, Alves D, Nogueira CW, Rocha JBT, Soares FAA (2008) An organotellurium compound with antioxidant activity against excitotoxic agents without neurotoxic effects in brain of rats. Brain Res Bull 76:114–123

    Article  PubMed  CAS  Google Scholar 

  11. Wagner C, Fachinetto R, Dalla Corte CL, Brito VB, Severo D, Dias GOC, Morel AF, Nogueira CW, Rocha JBT (2006) Quercitrin, a glycoside form of quercetin, prevents lipid peroxidation in vitro. Brain Res 1107:192–198

    Article  PubMed  CAS  Google Scholar 

  12. Williams RJ, Spencer JPE, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radical Biol Med 36:838–849

    Article  CAS  Google Scholar 

  13. Patel R, Garg R, Erande S, Maru GB (2007) Chemopreventive herbal anti-oxidants: current status and future perspectives. J Clin Biochem Nutr 40:82–91

    Article  PubMed  CAS  Google Scholar 

  14. Cui K, Luo XL, Xu KY, Murthy MRV (2004) Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog Neuropsychopharmacol Biol Psychiatry 28:771–799

    Article  PubMed  CAS  Google Scholar 

  15. Evans DA, Hirsch JB, Dushenkov S (2006) Phenolics, inflammation and nutrigenomics. J Sci Food Agric 86:2503–2509

    Article  CAS  Google Scholar 

  16. Mentreddy SR (2007) Review––medicinal plant species with potential antidiabetic properties. J Sci Food Agric 87:743–750

    Article  CAS  Google Scholar 

  17. Leite JR, Seabra ML, Maluf E, Assolant K, Suchecki D, Tufik S, Klepacz S, Calil HM, Carlini EA (1986) Pharmacology of lemongrass (Cymbopogon citratus Stapf). III. Assessment of eventual toxic, hypnotic and anxiolytic effects on humans. J Ethnopharmacol 17:75–83

    Article  PubMed  CAS  Google Scholar 

  18. Velioglu YS, Mazza G, Gao L, Oomach BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. J Agric Food Chem 46:4113–4117

    Article  CAS  Google Scholar 

  19. Oboh G, Rocha JBT (2007) Polyphenols in red pepper [Capsicum annuum var. aviculare (Tepin)] and their protective effect on some pro-oxidants induced lipid peroxidation in brain and liver. Eur Food Res Tech 225:239–247

    Article  CAS  Google Scholar 

  20. Oboh G, Puntel RL, Rocha JBT (2007) Hot pepper (Capsicum annuum, Tepin and Capsicum chinese, Habanero) prevents Fe2+ -induced lipid peroxidation in brain - in vitro. Food Chem 102:178–185

    Article  CAS  Google Scholar 

  21. Sabir SM, Maqsood H, Ahmed SD, Shah AH, Khan MQ (2005) Chemical and nutritional constituents of sea buckthorn (Hippophae rhamnoides ssp. turkestanica) berries from Pakistan. Ital J Food Sci 17:455–462

    CAS  Google Scholar 

  22. Dreostic IE, Wargovich MJ, Yang CS (1997) Inhibition of carcinogenesis by tea: the evidence from experimental studies. Crit Rev Food Sci Nutr 37:761–770

    Google Scholar 

  23. Jankun J, Selman SH, Swiercz R, Skrzypczak-Jankun E (1997) Why drinking green tea could prevent cancer. Nature 387:561

    Article  PubMed  CAS  Google Scholar 

  24. Wiseman SA, Balentine DA, Frei B (1997) Antioxidants in tea. Crit Rev Food Sci Nutr 37:705–718

    PubMed  CAS  Google Scholar 

  25. Hertog MGL, Hollman PCH, van de Putte B (1993) Content of potentially anticarcinogenic flavonids of tea infusions, wines, and fruit juices. J Agric Food Chem 41:1242–1246

    Article  CAS  Google Scholar 

  26. Au Kono S, Shinchi K, Wakabayashi K, Honjo S, Todoroki I, Sakura Y, Imanishi K, Nishikawa H, Ogawa S, Katsurada M (1996) Relation of green tea consumption to serum lipids and lipoproteins in Japanese men. J Epidemio 6:128–133

    Google Scholar 

  27. Tijburg LBM, Mattern T, Folts JD, Weisgerber UM, Katan MB (1997) Tea flavonoids and cardiovascular diseases: a review. Crit Rev Food Sci Nutr 37:771–785

    Article  PubMed  CAS  Google Scholar 

  28. Pietrovski EF, Rosa KA, Facundo VA, Rios K, Marques MCA, Santos ARS (2006) Antinociceptive properties of the ethanolic extract and of the triterpene 3 h, 6 h, 16 h-trihidroxilup-20(29)-ene obtained from the flowers of Combretum leprosum in mice. Pharmacol Biochem Behav 83:90–99

    Article  PubMed  CAS  Google Scholar 

  29. Carlini EA (2003) Plants and the central nervous system. Pharmacol Biochem Behav 75:501–512

    Article  PubMed  CAS  Google Scholar 

  30. dos Santos-Neto LL, de Vilhena Toledo MA, Medeiros-Souza P, de Souza GA (2006) The use of herbal medicine in Alzheimer’s disease––a systematic review. Ev-Bas Comp Alt Med 3:441–445

    Article  Google Scholar 

  31. de Sousa AC, Alviano DS, Blank AF, Alves PB, Alviano CS, Gattass CR (2004) Melissa officinalis L essential oil: antitumoral and antioxidant activities. J Pharm Pharmacol 56:677–681

    Article  PubMed  CAS  Google Scholar 

  32. Marongiu B, Porcedda S, Piras A, Rosa A, Deiana M, Dessi MA (2004) Antioxidant activity of supercritical extract of Melissa officinalis subsp. officinalis and Melissa officinalis subsp. inodora. Phytother Res 18:789–792

    Article  PubMed  Google Scholar 

  33. Perry EK, Pickering AT, Wang WW, Houghton PJ, Perry NS (1999) Medicinal plants and Alzheimer’s disease: from ethnobotany to phytotherapy. J Pharm Pharmacol 51:527–534

    Article  PubMed  CAS  Google Scholar 

  34. Carlini EA, Contar JDP, Silva-Filho AR, Silveira-Filho NG, Frochtengarten ML, Bueno OF (1986) Pharmacology of lemongrass (Cymbopogon citratus Stapf) I. Effects of teas prepared from the leaves on laboratory animals. J Ethnopharmacol 17:37–64

    Article  PubMed  CAS  Google Scholar 

  35. Avallone R, Zanoli P, Puia G, Kleinschnitz M, Schreier P, Baraldi M (2000) Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochem Pharmacol 59:1387–1394

    Article  PubMed  CAS  Google Scholar 

  36. Zanoli P, Avallone R, Baraldi M (2000) Behavioral characterization of the flavonoids apigenin and chrysin. Fitoterapia 71:S117–S123

    Article  PubMed  CAS  Google Scholar 

  37. Fidler P, Loprinzi CL, O’Fallon JR, Leitch JM, Lee JK, Hayes DL, Novotny P, Clemens-Schutjer D, Bartel J, Michalak JC (1996) Prospective evaluation of a chamomile mouthwash for prevention of 5-FU-induced oral mucositis. Cancer 77:522–525

    Article  PubMed  CAS  Google Scholar 

  38. Morel AF, Dias GO, Porto C, Simionatto C, Stuker CZ, Dalcol II (2006) Antimicrobial activity of extractives of Solidago microglossa. Fitoterapia 77:453–455

    Article  PubMed  CAS  Google Scholar 

  39. Puntel RL, Roos DH, Grotto D, Garcia SC, Nogueira CW, Rocha JB (2007) Antioxidant properties of Krebs cycle intermediates against malonate pro-oxidant activity in vitro: a comparative study using the colorimetric method and HPLC analysis to determine malondialdehyde in rat brain homogenates. Life Sci 81:51–62

    Article  PubMed  CAS  Google Scholar 

  40. Ohkawa H, Ohishi H, Yagi K (1979) Assay for lipid peroxide in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  41. Choi CW, Kim SC, Hwang SS, Choi BK, Ahn HJ, Lee MY, Paerk SH, Kim SK (2002) Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci 153:1161–1168

    Article  Google Scholar 

  42. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Meth Enzymol 299:152–178

    Article  CAS  Google Scholar 

  43. Pachaly P (1999) DC-Atlas–Dünnschicht-Chromatographie in der Apotheke. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  44. Stahl E, Schild W (1981) Pharmazeutische Biologie–Drogenanalyse II: Inhaltsstoffe und Isolierung. Gustav Fischer, Stuttgart

    Google Scholar 

  45. Pereira MA, Grubbs CJ, Barnes LH, Li H, Olson GR (1996) Effect of the phytochemicals, curcumin and quercetin upon azomethane-induced: cancer and 7, 12-dimethylbenz(a)anthracene-induced mammary cancer in rats. Carcinogenesis 17:1305–1311

    Article  PubMed  CAS  Google Scholar 

  46. Yang CS, Kim S, Yang GY, Lee MJ, Liao J (1999) Inhibition of the carcinogenesis by tea; bioavailability of the tea polyphenols and mechanisms of the action. Pro Soc Exp Biol Med 220:213–217

    Article  CAS  Google Scholar 

  47. Thompson LU (2000) Lignans and isoflavones. In: Eisenbrand G, Dayan AD, Elias PS, Grunow W, Schlatter J (eds) Carcinogenic/anticarcinogenic factors in foods. Dtsch. Forsch. Gem., Ger. Wiley-VCH, Germany

    Google Scholar 

  48. Atoui AK, Mansouri A, Boskou G, Kefalas P (2005) Tea and herbal infusions: their antioxidant activity and phenolic profile. Food Chem 89:27–36

    Article  CAS  Google Scholar 

  49. Geetha T, Malhotra V, Chopra K, Kaur IP (2005) Antimutagenic and antioxidant/prooxidant activity of Quercetin. Indian J Exp Biol 43:61–67

    PubMed  CAS  Google Scholar 

  50. Bostanci MO, Bagirici F (2008) Neuroprotective effect of aminoguanidine on iron-induced neurotoxicity. Brain Res Bull 76:57–62

    Article  PubMed  CAS  Google Scholar 

  51. Fraga CG, Oteiza PI (2002) Iron toxicity and antioxidant nutrients. Toxicology 80:23–32

    Article  Google Scholar 

  52. Aisen P, Wessling-Resnick M, Leibold EA (1999) Iron metabolism. Curr Opin Chem Biol 3:200–206

    Article  PubMed  CAS  Google Scholar 

  53. Qian ZM, Wang Q, Pu Y (1997) Brain iron and neurological disorders. Chin Med J 110:455–458

    PubMed  CAS  Google Scholar 

  54. Swaiman KF (1991) Hallervorden-Spatz and brain iron metabolism. Arch Neurol 48:1285–1293

    PubMed  CAS  Google Scholar 

  55. Arnold WP, Longneeker DE, Epstein RM (1984) Photodegradation of sodium nitroprusside: biologic activity and cyanide release. Anesthesiology 61:254–260

    Article  PubMed  CAS  Google Scholar 

  56. Bates JN, Baker MT, Guerra R, Harrison DG (1990) Nitric oxide generation from nitroprusside by vascular tissue. Biochem Pharmacol 42:S157–S165

    Article  Google Scholar 

  57. Huie RE, Padmaja S (1993) The reaction of NO with superoxide. Free Radic Res Commun 18:195–199

    Article  PubMed  CAS  Google Scholar 

  58. Pryor WA, Squadrito GL (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268:L699–L722

    PubMed  CAS  Google Scholar 

  59. Alston TA, Mela L, Bright HJ (1977) 3-Nitropropionate, the toxic substance of Indiofera, is a suicide inactivator of succinate dehydrogenase. Proc Natl Acad Sci USA 74:3767–3771

    Article  PubMed  CAS  Google Scholar 

  60. Brand Williams W, Cuvelier MC, Berset C (1995) Use of a free-radical method to evaluate antioxidant activity. LWT 28:25–30

    Article  CAS  Google Scholar 

  61. Hatano T, Edmatsu R, Hiramatsu M, Mori A, Fujita Y, Yasuhara T, Yoshida T, Okuda T (1989) Effects of the interaction of tannins with coexisting substances. VI Effect of tannins and related polyphenols on superoxide anion radicals and on DPPH. Chem Pharm Bull 37:2016–2021

    CAS  Google Scholar 

  62. Yasuda T, Inaba A, Ohmori M, Endo T, Kubo S, Ohsawa K (2000) Urinary metabolites of gallic acid in rats and their radical scavenging effect on DPPH. J Nat Prod 63:1444–1446

    Article  PubMed  CAS  Google Scholar 

  63. Rice-Evans C, Miller N (1997) Measurement of the antioxidant status of dietary constituents, low density lipoproteins and plasma. Prostaglandins Leukotv Essent Fatty Acids 57:499–505

    Article  CAS  Google Scholar 

  64. Vinson JA, Dabbagh YA, Serry MM, Jang J (1995) Plant flavonoids, especially tea flavonoids, are powerful antioxidants using an in vitro oxidation model for heart disease. J Agric Food Chem 43:2800–2802

    Article  CAS  Google Scholar 

  65. Saija A, Scalese M, Lanza M, Marzullo D, Bonina F, Castelli F (1995) Flavonoids as antioxidant agents: importance of their interaction with biomembranes. Free Radic Biol Med 19:481–486

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The financial support by CAPES/SAUX/PROAP, VITAE Fundation, CNPq, FAPERGS, ICTP and FINEP research grant “Rede Instituto Brasileiro de Neurociência (IBN-Net)” # 01.06.0842-00 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Batista Teixeira Rocha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, R.P., Fachinetto, R., de Souza Prestes, A. et al. Antioxidant Effects of Different Extracts from Melissa officinalis, Matricaria recutita and Cymbopogon citratus . Neurochem Res 34, 973–983 (2009). https://doi.org/10.1007/s11064-008-9861-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9861-z

Keywords

Navigation