Skip to main content

Advertisement

Log in

A Hypothesis About the Relationship of Myelin-Associated Glycoprotein’s Function in Myelinated Axons to its Capacity to Inhibit Neurite Outgrowth

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The myelin-associated glycoprotein (MAG) is selectively localized in periaxonal Schwann cell and oligodendroglial membranes of myelin sheaths suggesting that it functions in glia–axon interactions in the PNS and CNS, and this is supported by much experimental evidence. In addition, MAG is now well known as one of several white matter inhibitors of neurite outgrowth in vitro and axonal regeneration in vivo, and this latter area of research has provided a substantial amount of information about neuronal receptors or receptor complexes for MAG. This article makes the hypothesis that the capacity of MAG to inhibit outgrowth of immature developing or regenerating neurites is an aberration of its normal physiological function to promote the maturation, maintenance, and survival of myelinated axons. The overview summarizes the literature on the function of MAG in PNS and CNS myelin sheaths and its role as an inhibitor of neurite outgrowth to put this hypothesis into perspective. Additional research is needed to determine if receptors and signaling systems similar to those responsible for MAG inhibition of neurite outgrowth also promote the maturation, maintenance, and survival of myelinated axons as hypothesized here, or if substantially different MAG-mediated signaling mechanisms are operative at the glia–axon junction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

MAG:

Myelin-associated glycoprotein

MS:

Multiple sclerosis

NgR:

Nogo receptor

p75NtR:

p75 Neurotrophin receptor

OMgp:

Oligodendrocyte-Myelin glycoprotein

2,3- or 2,6-SA:

α2,3- or α2,6-linked sialic acid

siglec:

Sialic acid-binding immunoglobulin-like lectin

References

  1. Quarles RH (2007) Myelin-associated glycoprotein (MAG): past, present and beyond. J Neurochem 100:1431–1448

    PubMed  CAS  Google Scholar 

  2. Filbin MT (2006) Recapitulate development to promote axonal regeneration: good or bad approach? Philos Trans R Soc Lond B Biol Sci 361:1565–1574

    Article  PubMed  CAS  Google Scholar 

  3. Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617–627

    Article  PubMed  CAS  Google Scholar 

  4. Quarles RH (1989) Glycoproteins of myelin and myelin-forming cells. In: Margolis RU, Margolis RK (eds) Neurobiology of glycoconjugates. Plenum Publishing Corporation, New York, pp 243–275

    Google Scholar 

  5. Schachner M, Bartsch U (2000) Multiple functions of the myelin-associated glycoprotein MAG (siglec-4a) in formation and maintenance of myelin. Glia 29:154–165

    Article  PubMed  CAS  Google Scholar 

  6. Keita M, Magy L, Heape A, Richard L, Piaser M, Vallat JM (2002) Immunocytological studies of L-MAG expression regulation during myelination of embryonic brain cell cocultures. Dev Neurosci 24:495–503

    Article  PubMed  CAS  Google Scholar 

  7. Nakahara J, Takemura M, Gomi H, Tsunematsu K, Itohara S, Asou H, Ogawa M, Aiso S, Tan-Takeuchi K (2003) Role of radial fibers in controlling the onset of myelination. J Neurosci Res 72:279–289

    Article  PubMed  CAS  Google Scholar 

  8. Paivalainen S, Heape AM (2007) Myelin-associated glycoprotein and galactosylcerebroside expression in Schwann cells during myelination. Mol Cell Neurosci 35:436–446

    Article  PubMed  CAS  Google Scholar 

  9. Li C, Tropak MB, Gerlai R, Clapoff S, Abramow NW, Trapp B, Peterson A, Roder J (1994) Myelination in the absence of myelin-associated glycoprotein. Nature 369:747–750

    Article  PubMed  CAS  Google Scholar 

  10. Montag D, Giese KP, Bartsch U, Martini R, Lang Y, Bluthmann H, Karthigasan J, Kirschner DA, Wintergerst ES, Nave KA et al (1994) Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin. Neuron 13:229–246

    Article  PubMed  CAS  Google Scholar 

  11. Georgiou J, Tropak MP, Roder JC (2004) Myelin-associated glycoprotein gene. In: Lazzarini RA (ed) Myelin biology and disorders. ElsevierAcademic Press, San Diego, pp 421–467

    Chapter  Google Scholar 

  12. Uschkureit T, Sporkel O, Stracke J, Bussow H, Stoffel W (2000) Early onset of axonal degeneration in double (plp-/-mag-/-) and hypomyelinosis in triple (plp-/-mbp-/-mag-/-) mutant mice. J Neurosci 20:5225–5233

    PubMed  CAS  Google Scholar 

  13. Pan B, Fromholt SE, Hess EJ, Crawford TO, Griffin JW, Sheikh KA, Schnaar RL (2005) Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single- and double-null mice. Exp Neurol 195:208–217

    Article  PubMed  CAS  Google Scholar 

  14. Yin X, Crawford TO, Griffin JW, Tu P, Lee VM, Li C, Roder J, Trapp BD (1998) Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J Neurosci 18:1953–1962

    PubMed  CAS  Google Scholar 

  15. Weiss MD, Luciano CA, Quarles RH (2001) Nerve conduction abnormalities in aging mice deficient for myelin-associated glycoprotein. Muscle Nerve 24:1380–1387

    Article  PubMed  CAS  Google Scholar 

  16. Pigano G, Kirkpatrick LL, Brady ST (2006) The cytoskeleton of neurons and glia. In: Siegel GJ, Albers RW, Brady ST, Price DL (eds) Basuc neurochemistry: molecular, cellular and medical aspects. Academic Press Elsevier, Boston, pp 123–137

    Google Scholar 

  17. Dashiell SM, Tanner SL, Pant HC, Quarles RH (2002) Myelin-associated glycoprotein modulates expression and phosphorylation of neuronal cytoskeletal elements and their associated kinases. J Neurochem 81:1263–1272

    Article  PubMed  CAS  Google Scholar 

  18. Lassmann H, Bartsch U, Montag D, Schachner M (1997) Dying-back oligodendrogliopathy: a late sequel of myelin-associated glycoprotein deficiency. Glia 19:104–110

    Article  PubMed  CAS  Google Scholar 

  19. Loers G, Aboul-Enein F, Bartsch U, Lassmann H, Schachner M (2004) Comparison of myelin, axon, lipid, and immunopathology in the central nervous system of differentially myelin-compromised mutant mice: a morphological and biochemical study. Mol Cell Neurosci 27:175–189

    Article  PubMed  CAS  Google Scholar 

  20. Raisman G (2004) Myelin inhibitors: does NO mean GO? Nat Rev Neurosci 5:157–161

    Article  PubMed  CAS  Google Scholar 

  21. Huang JK, Phillips GR, Roth AD, Pedraza L, Shan W, Belkaid W, Mi S, Fex-Svenningsen A, Florens L, Yates JR III, Colman DR (2005) Glial membranes at the node of Ranvier prevent neurite outgrowth. Science 310:1813–1817

    Article  PubMed  CAS  Google Scholar 

  22. Sato S, Quarles RH, Brady RO (1982) Susceptibility of the myelin-associated glycoprotein and basic protein to a neutral protease in highly purified myelin from human and rat brain. J Neurochem 39:97–105

    Article  PubMed  CAS  Google Scholar 

  23. Stebbins JW, Jaffe H, Fales HM, Moller JR (1997) Determination of a native proteolytic site in myelin-associated glycoprotein. Biochemistry 36:2221–2226

    Article  PubMed  CAS  Google Scholar 

  24. Möller JR, Yanagisawa K, Brady RO, Tourtellotte WW, Quarles RH (1987) Myelin-associated glycoprotein in multiple sclerosis lesions: a quantitative and qualitative analysis. Ann Neurol 22:469–474

    Article  PubMed  Google Scholar 

  25. Tang S, Qiu J, Nikulina E, Filbin MT (2001) Soluble myelin-associated glycoprotein released from damaged white matter inhibits axonal regeneration. Mol Cell Neurosci 18:259–269

    Article  PubMed  CAS  Google Scholar 

  26. Vinson M, Strijbos PJ, Rowles A, Facci L, Moore SE, Simmons DL, Walsh FS (2001) Myelin-associated glycoprotein interacts with ganglioside GT1b. A mechanism for neurite outgrowth inhibition. J Biol Chem 276:20280–20285

    Article  PubMed  CAS  Google Scholar 

  27. Vyas AA, Patel HV, Fromholt SE, Heffer-Lauc M, Vyas KA, Dang J, Schachner M, Schnaar RL (2002) Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci USA 99:8412–8417

    Article  PubMed  CAS  Google Scholar 

  28. Kelm S, Pelz A, Schauer R, Filbin MT, Tang S, de Bellard ME, Schnaar RL, Mahoney JA, Hartnell A, Bradfield P et al (1994) Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr Biol 4:965–972

    Article  PubMed  CAS  Google Scholar 

  29. Quarles RH (2002) Myelin sheaths: glycoproteins involved in their formation, maintenance and degeneration. Cell Mol Life Sci 59:1851–1871

    Article  PubMed  CAS  Google Scholar 

  30. Varki A, Angata T (2006) Siglecs—the major subfamily of I-type lectins. Glycobiology 16:1R–27R

    Article  PubMed  CAS  Google Scholar 

  31. Vyas AA, Schnaar RL (2001) Brain gangliosides: functional ligands for myelin stability and the control of nerve regeneration. Biochimie 83:677–682

    Article  PubMed  CAS  Google Scholar 

  32. Strenge K, Schauer R, Bovin N, Hasegawa A, Ishida H, Kiso M, Kelm S (1998) Glycan specificity of myelin-associated glycoprotein and sialoadhesin deduced from interactions with synthetic oligosaccharides. Eur J Biochem 258:677–685

    Article  PubMed  CAS  Google Scholar 

  33. Strenge K, Schauer R, Kelm S (1999) Binding partners for the myelin-associated glycoprotein of N2A neuroblastoma cells. FEBS Lett 444:59–64

    Article  PubMed  CAS  Google Scholar 

  34. Bartoszewicz ZP, Lauter CJ, Quarles RH (1996) The myelin-associated glycoprotein of the peripheral nervous system in trembler mutants contains increased alpha 2–3 sialic acid and galactose. J Neurosci Res 43:587–593

    Article  PubMed  CAS  Google Scholar 

  35. Ogawa-Goto K, Abe T (1998) Gangliosides and glycosphingolipids of peripheral nervous system myelins—a minireview. Neurochem Res 23:305–310

    Article  PubMed  CAS  Google Scholar 

  36. Tropak MB, Roder JC (1997) Regulation of myelin-associated glycoprotein binding by sialylated cis-ligands. J Neurochem 68:1753–1763

    Article  PubMed  CAS  Google Scholar 

  37. DeBellard ME, Tang S, Mukhopadhyay G, Shen YJ, Filbin MT (1996) Myelin-associated glycoprotein inhibits axonal regeneration from a variety of neurons via interaction with a sialoglycoprotein. Mol Cell Neurosci 7:89–101

    Article  PubMed  CAS  Google Scholar 

  38. Tang S, Shen YJ, DeBellard ME, Mukhopadhyay G, Salzer JL, Crocker PR, Filbin MT (1997) Myelin-associated glycoprotein interacts with neurons via a sialic acid binding site at ARG118 and a distinct neurite inhibition site. J Cell Biol 138:1355–1366

    Article  PubMed  CAS  Google Scholar 

  39. Cao Z, Qiu J, Domeniconi M, Hou J, Bryson JB, Mellado W, Filbin MT (2007) The inhibition site on myelin-associated glycoprotein is within Ig-domain 5 and is distinct from the sialic acid binding site. J Neurosci 27:9146–9154

    Article  PubMed  CAS  Google Scholar 

  40. Domeniconi M, Cao Z, Spencer T, Sivasankaran R, Wang K, Nikulina E, Kimura N, Cai H, Deng K, Gao Y, He Z, Filbin M (2002) Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35:283–290

    Article  PubMed  CAS  Google Scholar 

  41. Liu BP, Fournier A, GrandPre T, Strittmatter SM (2002) Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 297:1190–1193

    Article  PubMed  CAS  Google Scholar 

  42. Venkatesh K, Chivatakarn O, Lee H, Joshi PS, Kantor DB, Newman BA, Mage R, Rader C, Giger RJ (2005) The Nogo-66 receptor homolog NgR2 is a sialic acid-dependent receptor selective for myelin-associated glycoprotein. J Neurosci 25:808–822

    Article  PubMed  CAS  Google Scholar 

  43. Wang KC, Kim JA, Sivasankaran R, Segal R, He Z (2002) P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420:74–78

    Article  PubMed  CAS  Google Scholar 

  44. Wong ST, Henley JR, Kanning KC, Huang KH, Bothwell M, Poo MM (2002) A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat Neurosci 5:1302–1308

    Article  PubMed  CAS  Google Scholar 

  45. Yamashita T, Higuchi H, Tohyama M (2002) The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J Cell Biol 157:565–570

    Article  PubMed  CAS  Google Scholar 

  46. Fujitani M, Kawai H, Proia RL, Kashiwagi A, Yasuda H, Yamashita T (2005) Binding of soluble myelin-associated glycoprotein to specific gangliosides induces the association of p75NTR to lipid rafts and signal transduction. J Neurochem 94:15–21

    Article  PubMed  CAS  Google Scholar 

  47. Vinson M, Rausch O, Maycox PR, Prinjha RK, Chapman D, Morrow R, Harper AJ, Dingwall C, Walsh FS, Burbidge SA, Riddell DR (2003) Lipid rafts mediate the interaction between myelin-associated glycoprotein (MAG) on myelin and MAG-receptors on neurons. Mol Cell Neurosci 22:344–352

    Article  PubMed  CAS  Google Scholar 

  48. Venkatesh K, Chivatakarn O, Sheu SS, Giger RJ (2007) Molecular dissection of the myelin-associated glycoprotein receptor complex reveals cell type-specific mechanisms for neurite outgrowth inhibition. J Cell Biol 177:393–399

    Article  PubMed  CAS  Google Scholar 

  49. Mehta NR, Lopez PH, Vyas AA, Schnaar RL (2007) Gangliosides and Nogo receptors independently mediate myelin-associated glycoprotein inhibition of neurite outgrowth in different nerve cells. J Biol Chem 282:27875–27886

    Article  PubMed  CAS  Google Scholar 

  50. Yang LJ, Lorenzini I, Vajn K, Mountney A, Schramm LP, Schnaar RL (2006) Sialidase enhances spinal axon outgrowth in vivo. Proc Natl Acad Sci USA 103:11057–11062

    Article  PubMed  CAS  Google Scholar 

  51. Mimura F, Yamagishi S, Arimura N, Fujitani M, Kubo T, Kaibuchi K, Yamashita T (2006) MAG inhibits microtubule assembly by a Rho-kinase dependent mechanism. J Biol Chem 281:15970–15979

    Article  PubMed  CAS  Google Scholar 

  52. De Vries GH, Zmachinski CJ (1980) The lipid composition of rat CNS axolemma-enriched fractions. J Neurochem 34:424–430

    Article  PubMed  Google Scholar 

  53. Sheikh KA, Deerinck TJ, Ellisman MH, Griffin JW (1999) The distribution of ganglioside-like moieties in peripheral nerves. Brain 122:449–460

    Article  PubMed  Google Scholar 

  54. Wang X, Chun SJ, Treloar H, Vartanian T, Greer CA, Strittmatter SM (2002) Localization of Nogo-A and Nogo-66 receptor proteins at sites of axon-myelin and synaptic contact. J Neurosci 22:5505–5515

    PubMed  CAS  Google Scholar 

  55. DeVries G (1981) Isolation of axolemma-enriched fractions from mammalian CNS. Res Method Neurochem 5:3–25

    CAS  Google Scholar 

  56. Sheikh KA, Sun J, Liu Y, Kawai H, Crawford TO, Proia RL, Griffin JW, Schnaar RL (1999) Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci USA 96:7532–7537

    Article  PubMed  CAS  Google Scholar 

  57. Bjartmar C, Wujek JR, Trapp BD (2003) Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 206:165–171

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This article is dedicated to George DeVries, a long time colleague and good friend. The subject is very appropriate because George followed the MAG story closely as it evolved over the years. Preparation of this review and covered research from our laboratory were supported by the Intramural Research Program of NINDS, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Quarles.

Additional information

Special issue article in honor of Dr. George DeVries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quarles, R.H. A Hypothesis About the Relationship of Myelin-Associated Glycoprotein’s Function in Myelinated Axons to its Capacity to Inhibit Neurite Outgrowth. Neurochem Res 34, 79–86 (2009). https://doi.org/10.1007/s11064-008-9668-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9668-y

Keywords

Navigation