Skip to main content

Advertisement

Log in

Protective Effects of Some Creatine Derivatives in Brain Tissue Anoxia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Some derivatives more lipophylic than creatine, thus theoretically being capable to better cross the blood–brain barrier, were studied for their protective effect in mouse hippocampal slices. We found that N-amidino-piperidine is harmful to brain tissue, and that phosphocreatine is ineffective. Creatine, creatine–Mg-complex (acetate) and phosphocreatine–Mg-complex (acetate) increased the latency to population spike disappearance during anoxia. Creatine and creatine–Mg-complex (acetate) also increased the latency of anoxic depolarization, while the delay induced by phosphocreatine–Mg-complex (acetate) was of borderline significance (P = 0.056). Phosphocreatine–Mg-complex (acetate) significantly reduced neuronal hyperexcitability during anoxia, an effect that no other compound (including creatine itself) showed. For all parameters except reduced hyperexcitability the effects statistically correlated with tissue levels of creatine or phosphocreatine. Summing up, exogenous phosphocreatine and N-amidino piperidine are not useful for brain protection, while chelates of both creatine and phosphocreatine do replicate some of the known protective effects of creatine. In addition, phosphocreatine–Mg-complex (acetate) also reduced neuronal hyperexcitability during anoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACSF:

Artificial cerebrospinal fluid

ADP:

Adenosine diphospate

ATP:

Adenosine triphosphate

CA1:

Cornu Ammonis, field 1

DC:

Direct current

GPA:

3-Guanidinopropionic acid

HPLC:

High-performance liquid chromatography

RP-HPLC:

Reverse-phase high-performance liquid chromatography

TLC:

Thin layer chromatography

References

  1. Obrenovitch TP, Garofalo O, Harris RJ et al (1988) Brain tissue concentrations of ATP, phosphocreatine, lactate, and tissue pH in relation to reduced cerebral blood flow following experimental acute middle cerebral artery occlusion. J Cereb Blood Flow Metab 8:866–874

    PubMed  CAS  Google Scholar 

  2. Lipton P, Whittingham TS (1982) Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea-pig hippocampus. J Physiol 325:51–65

    PubMed  CAS  Google Scholar 

  3. Krivanek J, Bureš J, Burešova O (1958) Evidence for a relation between creatine phosphate level and polarity of the cerebral cortex. Nature 182:1799

    Google Scholar 

  4. Whittingham TS, Lipton P (1981) Cerebral synaptic transmission during anoxia is protected by creatine. J Neurochem 37:1618–1621

    Article  PubMed  CAS  Google Scholar 

  5. Balestrino M, Rebaudo R, Lunardi G (1999) Exogenous creatine delays anoxic depolarization and protects from hypoxic damage: dose-effect relationship. Brain Res 816:124–130

    Article  PubMed  CAS  Google Scholar 

  6. Kass IR, Lipton P (1982) Mechanisms involved in irreversible anoxic damage to the in vitro rat hippocampal slice. J Physiol (London) 332:459–472

    CAS  Google Scholar 

  7. Carter AJ, Muller RE, Pschorn U et al (1995) Preincubation with creatine enhances levels of creatine phosphate and prevents anoxic damage in rat hippocampal slices. J Neurochem 64:2691–2699

    Article  PubMed  CAS  Google Scholar 

  8. Yoneda K, Arakawa T, Asaoka Y et al (1983) Effects of accumulation of phosphocreatine on utilization and restoration of high-energy phosphates during anoxia and recovery in thin hippocampal slices from the guinea pig. Exp Neurol 82:215–222

    Article  PubMed  CAS  Google Scholar 

  9. Zapara TA, Simonova OG, Zharkikh AA et al (2004) Seasonal differences and protection by creatine or arginine pretreatment in ischemia of mammalian and molluscan neurons in vitro Brain Res 101:41–49

    Article  CAS  Google Scholar 

  10. Wilken B, Ramirez JM, Probst I et al (1998) Creatine protects the central respiratory network of mammals under anoxic conditions. Pediatr Res 43:8–14

    Article  PubMed  CAS  Google Scholar 

  11. Zhu S, Li M, Figueroa BE et al (2004) Prophylactic creatine administration mediates neuroprotection in cerebral ischemia in mice. J Neurosci 24:5909–5912

    Article  PubMed  CAS  Google Scholar 

  12. Wick M, Fujimori H, Michaelis T et al (1999) Brain water diffusion in normal and creatine-supplemented rats during transient global ischemia. Magn Reson Med 42:798–802

    Article  PubMed  CAS  Google Scholar 

  13. Perasso L, Cupello A, Lunardi GL et al (2003) Kinetics of creatine in blood and brain after intraperitoneal injection in the rat. Brain Res 974:37–42

    Article  PubMed  CAS  Google Scholar 

  14. Prass K, Royl G, Lindauer U et al (2006) Improved reperfusion and neuroprotection by creatine in a mouse model of stroke. J Cereb Blood Flow Metab 27:452–459

    Google Scholar 

  15. Lensman M, Korzhevskii DE, Mourovets VO et al (2006) Intracerebroventricular administration of creatine protects against damage by global cerebral ischemia in rat. Brain Res 1114:187–194

    Article  PubMed  CAS  Google Scholar 

  16. Stockler S, Holzbach U, Hanefeld F et al (1994) Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res 36:409–413

    PubMed  CAS  Google Scholar 

  17. Item CB, Stockler-Ipsiroglu S, Stromberger C et al (2001) Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. Am J Hum Genet 69:1127–1133

    Article  PubMed  CAS  Google Scholar 

  18. Salomons GS, van Dooren SJM, Verhoeven NM et al (2001) X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am J Hum Genet 68:1497–1500

    Article  PubMed  CAS  Google Scholar 

  19. Lunardi G, Parodi A, Perasso L et al (2006) The creatine transporter mediates the uptake of creatine by brain tissue, but not the uptake of two creatine-derived compounds.Neuroscience 142:991–997

    Article  PubMed  CAS  Google Scholar 

  20. Wheelwright DC, Ashmead SD (2000) Bioavailable chelates of creatine and essential metals. Patent 6,114,379

    Google Scholar 

  21. Balestrino M, Burov SV, Lensman M et al (2005) Complessi di fosfocreatina, Italian Patent Application TO2005A000847 of November 30, 2005

  22. Balestrino M, Aitken PG, Somjen GG (1986) The effects of moderate changes of extracellular K+ and Ca2+ on synaptic and neural function in the CA1 region of the hippocampal slice. Brain Res 377:229–239

    Article  PubMed  CAS  Google Scholar 

  23. Jarvis CR, Anderson TR, Andrew RD (2001) Anoxic depolarization mediates acute damage independent of glutamate in neocortical brain slices. Cereb Cortex 11:249–259

    Article  PubMed  CAS  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  25. Bureš J, Burešova O, Krivánek J (1974) The mechanisms and applications of Leão’s spreading depression of electroencephalographic activity. Academic Press, New York and London

    Google Scholar 

  26. Balestrino M, Aitken PG (1985) Paroxysmal firing in hippocampal slices during the early phase of hypoxia. Soc Neurosci Abs 11:433

    Google Scholar 

  27. Balestrino M, Somjen GG (1986) Chlorpromazine protects brain tissue in hypoxia by delaying spreading depression-mediated calcium influx. Brain Res 385:219–226

    Article  PubMed  CAS  Google Scholar 

  28. Dijkhuizen RM, Beekwilder JP, van der Worp HB et al (1999) Correlation between tissue depolarizations and damage in focal ischemic rat brain. Brain Res 840:194–205

    Article  PubMed  CAS  Google Scholar 

  29. Balestrino M, Aitken PG, Jones LS et al (1988) The role of spreading depression-like hypoxic depolarization in irreversible neuron damage, and its prevention. In: Somjen GG (ed) Mechanisms of cerebral hypoxia and stroke. plenum, New York, pp 291–301

    Google Scholar 

  30. Soboll S, Conrad A, Eistert A et al (1997) Uptake of creatine phosphate into heart mitochondria: a leak in the creatine shuttle. Biochim Biophys Acta 1320:27–33

    Article  PubMed  CAS  Google Scholar 

  31. Melani R, Rebaudo R, Noraberg J et al (2005) Changes in extracellular action potential detect kainic acid and trimethyltin toxicity in hippocampal slice preparations earlier than do MAP2 density measurements. Altern Lab Anim 33:379–386

    PubMed  CAS  Google Scholar 

  32. Kohling R, Melani R, Koch U et al (2005) Detection of electrophysiological indicators of neurotoxicity in human and rat brain slices by a three-dimensional microelectrode array. Altern Lab Anim 33:579–589

    PubMed  Google Scholar 

  33. van Vliet E, Stoppini L, Balestrino M et al (2007) Electrophysiological recording of re-aggregating brain cell cultures on multi-electrode arrays to detect acute neurotoxic effects. Neurotoxicology (in press) doi:10.1016/j.neuro.2007.06.004

  34. Pan JC, Pei YQ, An L et al. (1996) Epileptiform activity and hippocampal damage produced by intrahippocampal injection of guanidinosuccinic acid in rat. Neurosci Lett 209:121–124

    Article  PubMed  CAS  Google Scholar 

  35. da Silva CG, Parolo E, Streck EL et al (1999) In vitro inhibition of Na+, K+-ATPase activity from rat cerebral cortex by guanidino compounds accumulating in hyperargininemia. Brain Res 838:78–84

    Google Scholar 

  36. Balestrino M, Young J, Aitken P (1999) Block of (Na+, K+)ATPase with ouabain induces spreading depression-like depolarization in hippocampal slices. Brain Res 838:37–44

    Article  PubMed  CAS  Google Scholar 

  37. Petsche H, Rappelsberger P, Frey Z et al (1973) The epileptogenic effect of ouabain (g-strophanthin). Its action on the EEG and cortical morphology. Epilepsia 14:243–260

    Article  PubMed  CAS  Google Scholar 

  38. Lees GJ, Lehmann A, Sandberg M et al (1990) The neurotoxicity of ouabain, a sodium–potassium ATPase inhibitor, in the rat hippocampus. Neurosci Lett 120:159–162

    Article  PubMed  CAS  Google Scholar 

  39. Aitken PG (1985) Kainic acid and penicillin: differential effects on excitatory and inhibitory interactions in the CA1 region of the hippocampal slice. Brain Res 325:261–269

    Article  PubMed  CAS  Google Scholar 

  40. Reith J, Jorgensen HS, Nakayama H et al (1997) Seizures in acute stroke: predictors and prognostic significance—The Copenhagen Stroke Study. Stroke 28:1585–1589

    PubMed  CAS  Google Scholar 

  41. Kilpatrick CJ, Davis SM, Tress BM et al (1990) Epileptic seizures in acute stroke. Arch Neurol 47:157–160

    PubMed  CAS  Google Scholar 

  42. Clancy R, Malin S, Laraque D et al (1985) Focal motor seizures heralding stroke in full-term neonates. Am J Dis Child 139:601–606

    PubMed  CAS  Google Scholar 

  43. Daniele O, Mattaliano A, Tassinari CA et al (1989) Epileptic seizures and cerebrovascular disease. Acta Neurol Scand 80:17–22

    PubMed  CAS  Google Scholar 

  44. Shinton RA, Gill JS, Melnick SC et al (1988) The frequency, characteristics and prognosis of epileptic seizures at the onset of stroke. J Neurol Neurosurg Psychiat 51:273–276

    Article  PubMed  CAS  Google Scholar 

  45. Holmes GL (2002) Seizure-induced neuronal injury: animal data. Neurology 59:S3–S6

    PubMed  Google Scholar 

  46. Kawasaki H, Nohtomi A, Nakahara T et al (2001) Identification of creatine as an endogenous inhibitor of [3H] flunitrazepam binding. Soc Neurosci Abs 700.8

  47. Parodi M, Rebaudo R, Perasso L et al (2003) Effects of exogenous creatine on population spike amplitude and on postanoxic hyperexcitability in brain slices. Brain Res 963:197–202

    Article  PubMed  CAS  Google Scholar 

  48. Neu A, Neuhoff H, Trube G et al (2002) Activation of GABA(A) receptors by guanidinoacetate: a novel pathophysiological mechanism. Neurobiol Dis 11:298–307

    Article  PubMed  CAS  Google Scholar 

  49. Degrauw TJ, Cecil KM, Byars AW et al (2003) The clinical syndrome of creatine transporter deficiency. Mol Cell Biochem 244:45–48

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by INTAS (International Association for the promotion of co-operation with scientists from the New Independent States of the former Soviet Union, grant 441/00) and by Telethon Italy (grant GGP04092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Balestrino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perasso, L., Lunardi, G.L., Risso, F. et al. Protective Effects of Some Creatine Derivatives in Brain Tissue Anoxia. Neurochem Res 33, 765–775 (2008). https://doi.org/10.1007/s11064-007-9492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9492-9

Keywords

Navigation