Skip to main content

Advertisement

Log in

Radiomics for precision medicine in glioblastoma

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Being the most common primary brain tumor, glioblastoma presents as an extremely challenging malignancy to treat with dismal outcomes despite treatment. Varying molecular epidemiology of glioblastoma between patients and intra-tumoral heterogeneity explains the failure of current one-size-fits-all treatment modalities. Radiomics uses machine learning to identify salient features of the tumor on brain imaging and promises patient-specific management in glioblastoma patients.

Methods

We performed a comprehensive review of the available literature on studies investigating the role of radiomics and radiogenomics models for the diagnosis, stratification, prognostication as well as treatment planning and monitoring of glioblastoma.

Results

Classifiers based on a combination of various MRI sequences, genetic information and clinical data can predict non-invasive tumor diagnosis, overall survival and treatment response with reasonable accuracy. However, the use of radiomics for glioblastoma treatment remains in infancy as larger sample sizes, standardized image acquisition and data extraction techniques are needed to develop machine learning models that can be translated effectively into clinical practice.

Conclusion

Radiomics has the potential to transform the scope of glioblastoma management through personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Tykocki T, Eltayeb M (2018) Ten-year survival in glioblastoma. A systematic Review. J Clin Neurosci 54:7–13

    Article  PubMed  Google Scholar 

  2. Hobbs SK, Shi G, Homer R, Harsh G, Atlas SW, Bednarski MD (2003) Magnetic resonance image-guided proteomics of human glioblastoma multiforme. J MagnReson Imaging 18(5):530–536

    Article  Google Scholar 

  3. Ellingson BM (2015) Radiogenomics and imaging phenotypes in glioblastoma: novel observations and correlation with molecular characteristics. CurrNeurolNeurosci Rep 15(1):506

    Google Scholar 

  4. ElBanan MG, Amer AM, Zinn PO, Colen RR (2015) Imaging genomics of Glioblastoma: state of the art bridge between genomics and neuroradiology. Neuroimaging Clin N Am 25(1):141–153

    Article  PubMed  Google Scholar 

  5. Verduin M, Compter I, Steijvers D, Postma AA, Eekers DBP, Anten MM et al (2018) Noninvasive glioblastoma testing: multimodal approach to monitoring and predicting treatment response. Dis Markers 2018:2908609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Olar A, Aldape KD (2014) Using the molecular classification of glioblastoma to inform personalized treatment. J Pathol 232(2):165–177

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sotoudeh H, Shafaat O, Bernstock JD, Brooks MD, Elsayed GA, Chen JA et al (2019) Artificial intelligence in the management of glioma: era of personalized medicine. Front Oncol 9:768

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chaddad A, Kucharczyk MJ, Daniel P, Sabri S, Jean-Claude BJ, Niazi T, Abdulkarim B (2019) Radiomics in glioblastoma: current status and challenges facing clinical implementation. Front Oncol 21(9):374

    Article  Google Scholar 

  9. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762

    Article  PubMed  Google Scholar 

  10. Pinker K, Shitano F, Sala E, Do RK, Young RJ, Wibmer AG et al (2018) Background, current role, and potential applications of radiogenomics. J MagnReson Imaging 47(3):604–620

    Article  Google Scholar 

  11. Artzi M, Bressler I, Bashat DB (2019) Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. J Magn Reson Imaging 50(2):519–528

    Article  PubMed  Google Scholar 

  12. Bae S, An C, Ahn SS, Kim H, Han K, Kim SW et al (2020) Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validation. Sci Rep 21:10

    Google Scholar 

  13. Barajas RF, Phillips JJ, Parvataneni R, Molinaro A, Essock-Burns E, Bourne G et al (2012) Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging. Neuro Oncol 14(7):942–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cho HH, Lee SH, Kim J, Park H (2018) Classification of the glioma grading using radiomics analysis. PeerJ. 22(6):e5982

    Article  Google Scholar 

  15. Colen RR, Vangel M, Wang J, Gutman DA, Hwang SN, Wintermark M et al (2014) Imaging genomic mapping of an invasive MRI phenotype predicts patient outcome and metabolic dysfunction: a TCGA glioma phenotype research group project. BMC Med Genomics 2(7):30

    Article  CAS  Google Scholar 

  16. Drabycz S, Roldán G, de Robles P, Adler D, McIntyre JB, Magliocco AM et al (2010) An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging. Neuroimage 49(2):1398–1405

    Article  CAS  PubMed  Google Scholar 

  17. Ellingson BM, Lai A, Harris RJ, Selfridge JM, Yong WH, Das K et al (2013) Probabilistic radiographic atlas of glioblastoma phenotypes. AJNR Am J Neuroradiol 34(3):533–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gutman DA, Dunn WD, Grossmann P, Cooper LAD, Holder CA, Ligon KL et al (2015) Somatic mutations associated with MRI-derived volumetric features in glioblastoma. Neuroradiology 57(12):1227–1237

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jeong J, Wang L, Ji B, Lei Y, Ali A, Liu T et al (2019) Machine-learning based classification of glioblastoma using delta-radiomic features derived from dynamic susceptibility contrast enhanced magnetic resonance images: Introduction. Quant Imaging Med Surg 9(7):1201–1213

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hajianfar G, Shiri I, Maleki H, Oveisi N, Haghparast A, Abdollahi H et al (2019) Noninvasive O6 methylguanine-DNA methyltransferase status prediction in glioblastoma multiforme cancer using magnetic resonance imaging radiomics features: univariate and multivariate radiogenomics analysis. World Neurosurg 1(132):e140–e161

    Article  Google Scholar 

  21. Korfiatis P, Kline TL, Coufalova L, Lachance DH, Parney IF, Carter RE et al (2016) MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys 43(6):2835–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kong D-S, Kim J, Lee I-H, Kim ST, Seol HJ, Lee J-I et al (2016) Integrative radiogenomic analysis for multicentric radiophenotype in glioblastoma. Oncotarget 7(10):11526–11538

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee MH, Kim J, Kim S-T, Shin H-M, You H-J, Choi JW et al (2019) Prediction of IDH1 mutation status in glioblastoma using machine learning technique based on quantitative radiomic data. World Neurosurg 125:e688–e696

    Article  PubMed  Google Scholar 

  24. Li Z-C, Bai H, Sun Q, Li Q, Liu L, Zou Y et al (2018) Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study. EurRadiol 28(9):3640–3650

    Google Scholar 

  25. Lin X, Lee M, Buck O, Woo KM, Zhang Z, Hatzoglou V et al (2017) Diagnostic accuracy of T1-weighted DCE-MRI and DWI-ADC for differentiation of glioblastoma and primary CNS lymphoma. AJNR Am J Neuroradiol 38(3):485–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suh HB, Choi YS, Bae S, Ahn SS, Chang JH, Kang S-G et al (2018) Primary central nervous system lymphoma and atypical glioblastoma: differentiation using radiomics approach. EurRadiol 28(9):3832–3839

    Google Scholar 

  27. Naeini KM, Pope WB, Cloughesy TF, Harris RJ, Lai A, Eskin A et al (2013) Identifying the mesenchymal molecular subtype of glioblastoma using quantitative volumetric analysis of anatomic magnetic resonance images. Neuro Oncol 15(5):626–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakamoto T, Takahashi W, Haga A, Takahashi S, Kiryu S, Nawa K et al (2019) Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis. Sci Rep 9(1):19411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Pope WB, Mirsadraei L, Lai A, Eskin A, Qiao J, Kim HJ et al (2012) Differential gene expression in glioblastoma defined by ADC histogram analysis: relationship to extracellular matrix molecules and survival. AJNR Am J Neuroradiol 33(6):1059–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rathore S, Akbari H, Rozycki M, Abdullah KG, Nasrallah MP, Binder ZA et al (2018) Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1. Sci Rep 8(1):5087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sasaki T, Kinoshita M, Fujita K, Fukai J, Hayashi N, Uematsu Y et al (2019) Radiomics and MGMT promoter methylation for prognostication of newly diagnosed glioblastoma. Sci Rep 9(1):14435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tian Q, Yan L-F, Zhang X, Zhang X, Hu Y-C, Han Y et al (2018) Radiomics strategy for glioma grading using texture features from multiparametric MRI. J MagnReson Imaging 48(6):1518–1528

    Article  Google Scholar 

  33. Xi Y, Guo F, Xu Z, Li C, Wei W, Tian P et al (2018) Radiomics signature: A potential biomarker for the prediction of MGMT promoter methylation in glioblastoma. J Magn Reson Imaging 47(5):1380–1387

    Article  PubMed  Google Scholar 

  34. Zhang X, Yan L-F, Hu Y-C, Li G, Yang Y, Han Y et al (2017) Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features. Oncotarget 8(29):47816–47830

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zinn PO, Sathyan P, Mahajan B, Bruyere J, Hegi M, Majumder S et al (2012) A novel volume-age-KPS (VAK) glioblastoma classification identifies a prognostic cognate microRNA-gene signature. PLoS One. 7(8):e41522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zinn PO, Mahajan B, Majadan B, Sathyan P, Singh SK, Majumder S et al (2011) Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One. 6(10):e25451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shin I, Kim H, Ahn SS, Sohn B, Bae S, Park JE, Kim HS, Lee SK (2021) Development and validation of a deep learning-based model to distinguish glioblastoma from solitary brain metastasis using conventional MR images. Am J Neuroradiol 42(5):838–844

    Article  CAS  PubMed  Google Scholar 

  38. Lim DA, Cha S, Mayo MC, Chen M-H, Keles E, VandenBerg S, Berger MS (2007) Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol 9(4):424–429

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gutman DA, Cooper LAD, Hwang SN, Holder CA, Gao J, Aurora TD et al (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267(2):560–569

    Article  PubMed  PubMed Central  Google Scholar 

  40. Diehn M, Nardini C, Wang DS, McGovern S, Jayaraman M, Liang Y et al (2008) Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc Natl AcadSci U S A 105(13):5213–5218

    Article  CAS  Google Scholar 

  41. Chaddad A, Tanougast C (2016) Extracted magnetic resonance texture features discriminate between phenotypes and are associated with overall survival in glioblastoma multiforme patients. Med BiolEngComput 54(11):1707–1718

    Google Scholar 

  42. Abrigo JM, Fountain DM, Provenzale JM, Law EK, Kwong JS, Hart MG et al (2018) Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation. Cochrane Database Syst Rev. 1:CD011551

    PubMed  Google Scholar 

  43. Beig N, Patel J, Prasanna P, Hill V, Gupta A, Correa R et al (2018) Radiogenomic analysis of hypoxia pathway is predictive of overall survival in Glioblastoma. Sci Rep 8(1):7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Choi Y, Nam Y, Jang J, Shin N-Y, Lee YS, Ahn K-J, et al (2020) Radiomics may increase the prognostic value for survival in glioblastoma patients when combined with conventional clinical and genetic prognostic models. EurRadiol.

  45. Fuster-Garcia E, LorenteEstellés D, Álvarez-Torres M, Juan-Albarracín J, Chelebian E, Rovira A et al (2021) MGMT methylation may benefit overall survival in patients with moderately vascularized glioblastomas. EurRadiol 31(3):1738–47

    CAS  Google Scholar 

  46. Hsu JB-K, Lee GA, Chang T-H, Huang S-W, Le NQK, Chen Y-C, et al (2020) Radiomic immunophenotyping of GSEA-assessed immunophenotypes of glioblastoma and its implications for prognosis: a feasibility study. Cancers (Basel);12(10).

  47. Kickingereder P, Götz M, Muschelli J, Wick A, Neuberger U, Shinohara RT et al (2016) Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response. Clin Cancer Res 22(23):5765–5771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jain R, Poisson LM, Gutman D, Scarpace L, Hwang SN, Holder CA et al (2014) Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 272(2):484–493

    Article  PubMed  Google Scholar 

  49. Lao J, Chen Y, Li Z-C, Li Q, Zhang J, Liu J et al (2017) A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep 4:7

    Google Scholar 

  50. Liao X, Cai B, Tian B, Luo Y, Song W, Li Y (2019) Machine-learning based radiogenomics analysis of MRI features and metagenes in glioblastoma multiforme patients with different survival time. J Cell Mol Med 23(6):4375–4385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Molitoris JK, Rao YJ, Patel RA, Kane LT, Badiyan SN, Gittleman H et al (2017) Multi-institutional external validation of a novel glioblastoma prognostic nomogram incorporating MGMT methylation. J Neurooncol 134(2):331–338

    Article  CAS  PubMed  Google Scholar 

  52. Park JE, Kim HS, Jo Y, Yoo R-E, Choi SH, Nam SJ et al (2020) Radiomics prognostication model in glioblastoma using diffusion- and perfusion-weighted MRI. Sci Rep 10(1):4250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Sanghani P, Ang BT, King NKK, Ren H (2018) Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning. SurgOncol 27(4):709–714

    Google Scholar 

  54. Tixier F, Um H, Bermudez D, Iyer A, Apte A, Graham MS et al (2019) Preoperative MRI-radiomics features improve prediction of survival in glioblastoma patients over MGMT methylation status alone. Oncotarget 10(6):660–672

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yang D, Rao G, Martinez J, Veeraraghavan A, Rao A (2015) Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys 42(11):6725–6735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang X, Lu H, Tian Q, Feng N, Yin L, Xu X et al (2019) A radiomics nomogram based on multiparametric MRI might stratify glioblastoma patients according to survival. EurRadiol 29(10):5528–5538

    Google Scholar 

  57. Zhou M, Chaudhury B, Hall LO, Goldgof DB, Gillies RJ, Gatenby RA (2017) Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. J MagnReson Imaging 46(1):115–123

    Article  Google Scholar 

  58. Soltani M, Bonakdar A, Shakourifar N, Babaie R, Raahemifar K (2021) Efficacy of location-based features for survival prediction of patients with glioblastoma depending on resection status. Front Oncol 6(11):2509

    Google Scholar 

  59. Verma R, Correa R, Hill VB, Statsevych V, Bera K, Beig N, Mahammedi A, Madabhushi A, Ahluwalia M, Tiwari P (2020) Tumor habitat–derived radiomic features at pretreatment MRI that are prognostic for progression-free survival in glioblastoma are associated with key morphologic attributes at histopathologic examination: a feasibility study. Radiol Artificial Intelligence. 2(6):e190168

    Article  PubMed  Google Scholar 

  60. Pope WB, Lai A, Mehta R, Kim HJ, Qiao J, Young JR et al (2011) Apparent diffusion coefficient histogram analysis stratifies progression-free survival in newly diagnosed bevacizumab-treated glioblastoma. AJNR Am J Neuroradiol 32(5):882–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chaddad A, Daniel P, Sabri S, Desrosiers C, Abdulkarim B (2019) Integration of radiomic and multi-omic analyses predicts survival of newly diagnosed IDH1 wild-type glioblastoma. Cancers 11(8):1148

    Article  CAS  PubMed Central  Google Scholar 

  62. Pérez-Beteta J, Molina-García D, Ortiz-Alhambra JA, Fernández-Romero A, Luque B, Arregui E et al (2018) Tumor surface regularity at MR imaging predicts survival and response to surgery in patients with glioblastoma. Radiology 288(1):218–225

    Article  PubMed  Google Scholar 

  63. Akbari H, Macyszyn L, Da X, Bilello M, Wolf RL, Martinez-Lage M et al (2016) Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma. Neurosurgery 78(4):572–580

    Article  PubMed  Google Scholar 

  64. Baine M, Burr J, Du Q, Zhang C, Liang X, Krajewski L et al (2021) The potential use of radiomics with pre-radiation therapy MR imaging in predicting risk of pseudoprogression in glioblastoma patients. J Imaging 7(2):17

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bani-Sadr A, Eker OF, Berner L-P, Ameli R, Hermier M, Barritault M, et al (2019) Conventional MRI radiomics in patients with suspected early- or pseudo-progression. Neuro-Oncol Adv;1(vdz019).

  66. Cai J, Zheng J, Shen J, Yuan Z, Xie M, Gao M et al (2020) A Radiomics model for predicting the response to bevacizumab in brain necrosis after radiotherapy. Clin Cancer Res 26(20):5438–5447

    Article  CAS  PubMed  Google Scholar 

  67. Elshafeey N, Kotrotsou A, Hassan A, Elshafei N, Hassan I, Ahmed S et al (2019) Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma. Nat Commun 10(1):3170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Gaw N, Hawkins-Daarud A, Hu LS, Yoon H, Wang L, Xu Y et al (2019) Integration of machine learning and mechanistic models accurately predicts variation in cell density of glioblastoma using multiparametric MRI. Sci Rep 9(1):10063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Grossmann P, Narayan V, Chang K, Rahman R, Abrey L, Reardon DA et al (2017) Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol 19(12):1688–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim JY, Park JE, Jo Y, Shim WH, Nam SJ, Kim JH et al (2019) Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro Oncol 21(3):404–414

    Article  PubMed  Google Scholar 

  71. Petrova L, Korfiatis P, Petr O, LaChance DH, Parney I, Buckner JC et al (2019) Cerebral blood volume and apparent diffusion coefficient - Valuable predictors of non-response to bevacizumab treatment in patients with recurrent glioblastoma. J Neurol Sci. 405:116433

    Article  CAS  PubMed  Google Scholar 

  72. Yan J-L, Li C, van der Hoorn A, Boonzaier NR, Matys T, Price SJ (2020) A Neural network approach to identify the peritumoral invasive areas in glioblastoma patients by using MR radiomics. Sci Rep 10(1):9748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yoon HG, Cheon W, Jeong SW, Kim HS, Kim K, Nam H, et al (2020) Multi-Parametric Deep Learning Model for Prediction of Overall Survival after Postoperative Concurrent Chemoradiotherapy in Glioblastoma Patients. Cancers (Basel) [Internet];12(8)

  74. Zhang Z, Yang J, Ho A, Jiang W, Logan J, Wang X et al (2018) A predictive model for distinguishing radiation necrosis from tumour progression after gamma knife radiosurgery based on radiomic features from MR images. EurRadiol 28(6):2255–2263

    Google Scholar 

  75. Patel M, Zhan J, Natarajan K, Flintham R, Davies N, Sanghera P, Grist J, Duddalwar V, Peet A, Sawlani V (2021) Machine learning-based radiomic evaluation of treatment response prediction in glioblastoma. Clin Radiol.

  76. Rathore S, Akbari H, Doshi J, Shukla G, Rozycki M, Bilello M, Lustig RA, Davatzikos CA (2018) Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: implications for personalized radiotherapy planning. J Med Imaging. 5(2):021219

    Article  Google Scholar 

  77. De Ruysscher D, Niedermann G, Burnet NG, Siva S, Lee AWM, Hegi-Johnson F (2019) Radiotherapy toxicity. Nat Rev Dis Primers 5(1):1–20

    Google Scholar 

  78. Lee SY (2016) Temozolomide resistance in glioblastoma multiforme. Genes Dis 3(3):198–210

    Article  PubMed  PubMed Central  Google Scholar 

  79. Patel MD, Zhan J, Natarajan K, Flintham R, Davies N, Sanghera P, et al (2019) Radiomic evaluation of treatment response in patients with glioblastoma: a preliminary study. ECR 2019 EPOS. Eur Cong Radiol ECR; 2019

  80. Elshafeey N, Kotrotsou A, GiniebraCamejo D, Abrol S, Hassan I, El Salek K, et al (2017) Multicenter study to demonstrate radiomic texture features derived from MR perfusion images of pseudoprogression compared to true progression in glioblastoma patients. JCO. ;35(15_suppl):2016–2016.

  81. About the Quantitative Imaging Network (QIN) | Quantitative Imaging Network (QIN) | CIP Grant-supported Networks | Programs & Resources | Cancer Imaging Program (CIP) [Internet]. [cited 2021 Feb 20]. Available from: https://imaging.cancer.gov/programs_resources/specialized_initiatives/qin/about/teams.htm

  82. Shukla-Dave A, Obuchowski NA, Chenevert TL, Jambawalikar S, Schwartz LH, Malyarenko D et al (2019) Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J MagnReson Imaging 49(7):e101–e121

    Article  Google Scholar 

  83. Medical Image Artificial Intelligence Cloud Platform - Huiyihuiying-Medical Image Artificial Intelligence Cloud Platform [Internet]. [cited 2021 Feb 22]. Available from: http://en.huiyihuiying.com/

  84. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024

    Article  PubMed  Google Scholar 

  85. The Cancer Genome Atlas Program - National Cancer Institute [Internet]. 2018 [cited 2021 Feb 22]. Available from: https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga

  86. Narang S, Lehrer M, Yang D, Lee J, Rao A (2016) Radiomics in glioblastoma: current status, challenges and potential opportunities. Transl Cancer Res 5(4):383–397

    Article  CAS  Google Scholar 

  87. Avanzo M, Stancanello J, El Naqa I (2017) Beyond imaging: the promise of radiomics. Phys Med 38:122–139

    Article  PubMed  Google Scholar 

  88. Bidgood WD, Horii SC, Prior FW et al (1997) Understanding and using DICOM, the data interchange standard for biomedical imaging. J Am Med Inform Assoc 4:199–212

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hoebel KV, Patel JB, Beers AL, Chang K, Singh P, Brown JM et al (2020) Radiomics repeatability pitfalls in a scan-rescan MRI study of glioblastoma. Radiol Artificial Intelligence. 3(1):e190199

    Article  PubMed  Google Scholar 

  90. Zaidi H, El Naqa I (2010) PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 37:2165–2187

    Article  PubMed  Google Scholar 

  91. Mishra D, Dash R, Rath AK et al (2011) Feature selection in gene expression data using principal component analysis and rough set theory. AdvExp Med Biol 696:91–100

    Article  CAS  Google Scholar 

  92. Kumar D, Wong A, Clausi D (2015) Lung nodule classification using deep features in CT images. Computer & Robot Vision 327:110–116

    Google Scholar 

  93. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artificial Intelligence Res 1(16):321–357

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

KA—conceptualization, drafting, revising, reviewing, supervision, FBA—drafting, revising, SM—drafting, revising, FM—revising, reviewing, supervision, SAE—conceptualization, revising, reviewing, supervision, WBP—revising, reviewing, TM—revising, reviewing, JPR—revising, reviewing.

Corresponding author

Correspondence to Syed Ather Enam.

Ethics declarations

Conflict of interest

None.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aftab, K., Aamir, F.B., Mallick, S. et al. Radiomics for precision medicine in glioblastoma. J Neurooncol 156, 217–231 (2022). https://doi.org/10.1007/s11060-021-03933-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-021-03933-1

Keywords

Navigation