Skip to main content

Advertisement

Log in

The effect of mTOR inhibition on obstructive hydrocephalus in patients with tuberous sclerosis complex (TSC) related subependymal giant cell astrocytoma (SEGA)

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Mammalian target of rapamycin inhibitors (mTORi) are known to effectively reduce the size of subependymal giant cell astrocytomas (SEGAs), which are benign brain lesions associated with Tuberous Sclerosis Complex (TSC) that commonly cause obstructive hydrocephalus (OH). This retrospective case series reviews an institutional experience of the effect of mTORi on OH in patients with TSC-related SEGA.

Methods

Thirteen of 16 identified patients with TSC-related SEGA treated with mTORi from October 2007 to December 2018 were included. Serial magnetic resonance imaging (MRI) and clinical charts were reviewed to correlate symptoms and signs of increased intracranial pressure (iICP) with ventriculomegaly on MRI. A proposed ventriculomegaly scale was used: none (< 7 mm), mild (7–10 mm), moderate (11–30 mm), and severe (> 30 mm). OH was defined as moderate or severe ventriculomegaly, based on the largest measurement.

Results

Patients’ median age at start of mTORi was 13 (6–17) years and five (38%) patients were female. Eight patients had OH at the time of mTORi initiation, five of whom were asymptomatic. Six patients had improvement of hydrocephalus on serial MRI imaging with mTORi therapy, while seven patients had no change based on the ventriculomegaly scale used. All three patients who presented with symptoms of iICP and had OH also had papilledema. None had worsening of hydrocephalus or required shunt placement. Out of five patients with symptoms of iICP, four avoided surgery.

Conclusion

Most patients had asymptomatic OH at the time of diagnosis, and ventricular enlargement was not correlated with iICP symptoms. mTORi was successful for treatment of OH from TSC-related SEGA, even in the setting of acute symptoms of iICP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CSF:

Cerebrospinal fluid

EI:

Evans’ index

iICP:

Increased intracranial pressure

MRI:

Magnetic resonance imaging

mTOR:

Mammalian target of rapamycin

mTORi:

Mammalian target of rapamycin inhibitor

OH:

Obstructive hydrocephalus

SEGA:

Subependymal giant cell astrocytoma

TSC:

Tuberous sclerosis complex

VPS:

Ventriculoperitoneal shunt

References

  1. Hyman MH, Whittemore VH (2000) National institutes of health consensus conference: tuberous sclerosis complex. Arch Neurol 57:662–665

    Article  CAS  Google Scholar 

  2. Franz DN, Leonard J, Tudor C, Chuck G, Care M, Sethuraman G, Dinopoulos A, Thomas G, Crone KR (2006) Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol 59(3):490–498. https://doi.org/10.1002/ana.20784

    Article  CAS  Google Scholar 

  3. Roth J, Roach ES, Bartels U, Jozwiak S, Koenig MK, Weiner HL, Franz DN, Wang HZ (2013) Subependymal giant cell astrocytoma: diagnosis, screening, and treatment. Recommendations from the International Tuberous Sclerosis Complex Consensus Conference 2012. Pediatr Neurol 49(6):439–444. https://doi.org/10.1016/j.pediatrneurol.2013.08.017

    Article  Google Scholar 

  4. Krueger DA, Mcare MM, Holland K, Agricola K, Tudor C, Mangeshkar P, Wilson KA, Byars A, Sahmoud T (2010) Franz DN (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 363:1801–1811

    Article  CAS  Google Scholar 

  5. Adriaensen ME, Schaefer-Prokop CM, Stijnen T, Duyndam DA, Zonnenberg BA, Prokop M (2009) Prevalence of subependymal giant cell tumors in patients with tuberous sclerosis and a review of the literature. Eur J Neurol 16(6):691–696. https://doi.org/10.1111/j.1468-1331.2009.02567.x

    Article  CAS  PubMed  Google Scholar 

  6. Northrup H, Krueger DA, International Tuberous Sclerosis Complex Consensus G (2013) Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol 49(4):243–254. https://doi.org/10.1016/j.pediatrneurol.2013.08.001

    Article  Google Scholar 

  7. Krueger DA, Northrup H, International Tuberous Sclerosis Complex Consensus G (2013) Tuberous sclerosis complex surveillance and management: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol 49(4):255–265. https://doi.org/10.1016/j.pediatrneurol.2013.08.002

    Article  Google Scholar 

  8. Jozwiak S, Nabbout R, Curatolo P, participants of the TSCCMfS, Epilepsy M (2013) Management of subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis complex (TSC): clinical recommendations. Eur J Paediatr Neurol 17(4):348–352. https://doi.org/10.1016/j.ejpn.2012.12.008

    Article  Google Scholar 

  9. Fohlen M, Ferrand-Sorbets S, Delalande O, Dorfmuller G (2018) Surgery for subependymal giant cell astrocytomas in children with tuberous sclerosis complex. Childs Nerv Syst 34(8):1511–1519. https://doi.org/10.1007/s00381-018-3826-6

    Article  PubMed  Google Scholar 

  10. Sun P, Kohrman M, Liu J, Guo A, Rogerio J, Krueger D (2012) Outcomes of resecting subependymal giant cell astrocytoma (SEGA) among patients with SEGA-related tuberous sclerosis complex: a national claims database analysis. Curr Med Res Opin 28(4):657–663. https://doi.org/10.1185/03007995.2012.658907

    Article  Google Scholar 

  11. Kasper E, Laviv Y, Sebai M-AE, Lin N, Butler W (2017) Subependymal giant cell astrocytoma: associated hyperproteinorrhachia causing shunt failures and nonobstructive hydrocephalus—report of successful treatment with long-term follow-up. Asian J Neurosurg 12(4):746–750

    Article  Google Scholar 

  12. de Ribaupierre S, Dorfmuller G, Bulteau C, Fohlen M, Pinard JM, Chiron C, Delalande O (2007) Subependymal giant-cell astrocytomas in pediatric tuberous sclerosis disease: when should we operate? Neurosurgery 60(1):83–89 (discussion 89–90). https://doi.org/10.1227/01.NEU.0000249216.19591.5D

    Article  Google Scholar 

  13. Franz DN, Belousova E, Sparagana S, Bebin EM, Frost M, Kuperman R, Witt O, Kohrman MH, Flamini JR, Wu JY, Curatolo P, de Vries PJ, Whittemore VH, Thiele EA, Ford JP, Shah G, Cauwel H, Lebwohl D, Sahmoud T, Jozwiak S (2013) Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 381(9861):125–132. https://doi.org/10.1016/s0140-6736(12)61134-9

    Article  CAS  PubMed  Google Scholar 

  14. Weidman DR, Pole JD, Bouffet E, Taylor MD, Bartels U (2015) Dose-level response rates of mTor inhibition in tuberous sclerosis complex (TSC) related subependymal giant cell astrocytoma (SEGA). Pediatr Blood Cancer 62(10):1754–1760. https://doi.org/10.1002/pbc.25573

    Article  CAS  PubMed  Google Scholar 

  15. Perek-Polnik M, Jozwiak S, Jurkiewicz E, Perek D, Kotulska K (2012) Effective everolimus treatment of inoperable, life-threatening subependymal giant cell astrocytoma and intractable epilepsy in a patient with tuberous sclerosis complex. Eur J Paediatr Neurol 16(1):83–85. https://doi.org/10.1016/j.ejpn.2011.09.006

    Article  PubMed  Google Scholar 

  16. Moavero R, Carai A, Mastronuzzi A, Marciano S, Graziola F, Vigevano F, Curatolo P (2017) Everolimus alleviates obstructive hydrocephalus due to subependymal giant cell astrocytomas. Pediatr Neurol 68:59–63. https://doi.org/10.1016/j.pediatrneurol.2016.11.003

    Article  PubMed  Google Scholar 

  17. Sari E, Sari S, Akgun V, Ozcan E, Ince S, Babacan O, Saldir M, Acikel C, Basbozkurt G, Yesilkaya S, Kilic C, Kara K, Vurucu S, Kocaoglu M, Yesilkaya E (2015) Measures of ventricles and evans' index: from neonate to adolescent. Pediatr Neurosurg 50(1):12–17. https://doi.org/10.1159/000370033

    Article  PubMed  Google Scholar 

  18. Jaraj D, Rabiei K, Marlow T, Jensen C, Skoog I, Wikkelso C (2017) Estimated ventricle size using Evans index: reference values from a population-based sample. Eur J Neurol 24(3):468–474. https://doi.org/10.1111/ene.13226

    Article  CAS  PubMed  Google Scholar 

  19. Di Rocco C, Caldarelli M, Ceddia A (1989) "Occult" hydrocephalus in children. Childs Nerv Syst 5:71–75

    Article  Google Scholar 

  20. Kirkpatrick M, Engleman H, Minns RA (1989) Symptoms and signs of progressive hydrocephalus. Arch Dis Child 64:124–128

    Article  CAS  Google Scholar 

  21. Kahle KT, Kulkarni AV, Limbrick DD, Warf BC (2016) Hydrocephalus in children. Lancet 387(10020):788–799. https://doi.org/10.1016/s0140-6736(15)60694-8

    Article  PubMed  Google Scholar 

  22. Goh S, Butler W, Thiele EA (2004) Subependymal giant cell tumors in tuberous sclerosis complex. Neurology 63:1457–1461

    Article  Google Scholar 

  23. Chan DL, Calder T, Lawson JA, Mowat D, Kennedy SE (2018) The natural history of subependymal giant cell astrocytomas in tuberous sclerosis complex: a review. Rev Neurosci 29(3):295–301. https://doi.org/10.1515/revneuro-2017-0027

    Article  PubMed  Google Scholar 

  24. Kehler U, Regelsberger J, Gliemroth J, Westphal M (2006) Outcome prediction of third ventriculostomy: a proposed hydrocephalus grading system. Minim Invasive Neurosurg 49(4):238–243. https://doi.org/10.1055/s-2006-950382

    Article  CAS  PubMed  Google Scholar 

  25. Di Rocco C, Iannelli A, Marchese E (1995) On the treatment of subependymal giant cell astrocytomas and associated hydrocephalus in tuberous sclerosis. Pediatr Neurosurg 23:115–121

    Article  Google Scholar 

  26. French JA, Lawson JA, Yapici Z, Ikeda H, Polster T, Nabbout R, Curatolo P, de Vries PJ, Dlugos DJ, Berkowitz N, Voi M, Peyrard S, Pelov D, Franz DN (2016) Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 388(10056):2153–2163. https://doi.org/10.1016/s0140-6736(16)31419-2

    Article  CAS  PubMed  Google Scholar 

  27. Arroyo MS, Krueger DA, Broomall E, Stevenson CB, Franz DN (2017) Acute management of symptomatic subependymal giant cell astrocytoma with everolimus. Pediatr Neurol 72:81–85. https://doi.org/10.1016/j.pediatrneurol.2017.04.008

    Article  PubMed  Google Scholar 

  28. Amin S, Carter M, Edwards RJ, Pople I, Aquilina K, Merrifield J, Osborne JP, O'Callaghan FJ (2013) The outcome of surgical management of subependymal giant cell astrocytoma in tuberous sclerosis complex. Eur J Paediatr Neurol 17(1):36–44. https://doi.org/10.1016/j.ejpn.2012.10.005

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Bartels.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This research study was conducted retrospectively from data obtained for clinical purposes. Institutional Research Ethics Board approval was obtained at The Hospital for Sick Children (REB number: 1000060201).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weidman, D.R., Palasamudram, S., Zak, M. et al. The effect of mTOR inhibition on obstructive hydrocephalus in patients with tuberous sclerosis complex (TSC) related subependymal giant cell astrocytoma (SEGA). J Neurooncol 147, 731–736 (2020). https://doi.org/10.1007/s11060-020-03487-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03487-8

Keywords

Navigation