Skip to main content

Advertisement

Log in

5-Aminolevulinic acid fluorescence guided surgery for recurrent high-grade gliomas

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Fluorescence guided surgery (FGS) with five-aminolevulinic acid (5-ALA) is expected to revolutionize neurosurgical care of patients with high-grade gliomas (HGG). After the recent landmark FDA approval, this optical agent is now available to neurosurgeons in the United States.

Methods

This review is designed to highlight the evidence for the use of 5-ALA in recurrent HGG surgery for the neurosurgical community. The manuscript was prepared in accordance with the PRISMA guidelines.

Results

Intra-operatively, a strong fluorescent signal is highly correlated with the presence of cellular tumor in recurrent HGG, giving it a high positive predictive value (PPV). Similar to what is observed in primary HGG surgery, false-negative results can occur if tumor cells do not emit fluorescence. In addition, false-positive fluorescence signals in tissues devoid of tumor cells can be observed more frequently in recurrent HGG compared to the primary setting. However, these areas overwhelmingly contain reactive/regressive tissue, resection of which is unlikely to cause functional deficits. The safety profile of 5-ALA is similarly favorable in primary and recurrent HGG.

Conclusions

5-ALA FGS is a powerful adjunct in the resection of recurrent HGG with a high PPV and favorable safety profile. It is therefore the authors’ opinion to routinely employ this fluorescent agent as a standard of care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8. https://doi.org/10.3171/2011.2.JNS10998

    Article  PubMed  Google Scholar 

  2. Oppenlander ME, Wolf AB, Snyder LA, Bina R, Wilson JR, Coons SW, Ashby LS, Brachman D, Nakaji P, Porter RW, Smith KA, Spetzler RF, Sanai N (2014) An extent of resection threshold for recurrent glioblastoma and its risk for neurological morbidity. J Neurosurg 120:846–853. https://doi.org/10.3171/2013.12.JNS13184

    Article  PubMed  Google Scholar 

  3. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, Group AL-GS (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401. https://doi.org/10.1016/S1470-2045(06)70665-9

    Article  CAS  PubMed  Google Scholar 

  4. Lau D, Hervey-Jumper SL, Chang S, Molinaro AM, McDermott MW, Phillips JJ, Berger MS (2016) A prospective Phase II clinical trial of 5-aminolevulinic acid to assess the correlation of intraoperative fluorescence intensity and degree of histologic cellularity during resection of high-grade gliomas. J Neurosurg 124:1300–1309. https://doi.org/10.3171/2015.5.JNS1577

    Article  CAS  PubMed  Google Scholar 

  5. Widhalm G, Minchev G, Woehrer A, Preusser M, Kiesel B, Furtner J, Mert A, Di Ieva A, Tomanek B, Prayer D, Marosi C, Hainfellner JA, Knosp E, Wolfsberger S (2012) Strong 5-aminolevulinic acid-induced fluorescence is a novel intraoperative marker for representative tissue samples in stereotactic brain tumor biopsies. Neurosurg Rev 35:381–391. https://doi.org/10.1007/s10143-012-0374-5

    Article  PubMed  Google Scholar 

  6. Nabavi A, Thurm H, Zountsas B, Pietsch T, Lanfermann H, Pichlmeier U, Mehdorn M, Group ALARGS (2009) Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: a phase ii study. Neurosurgery 65:1070–1076. https://doi.org/10.1227/01.NEU.0000360128.03597.C7 (discussion 1076–1077)

    Article  PubMed  Google Scholar 

  7. Utsuki S, Oka H, Sato S, Shimizu S, Suzuki S, Tanizaki Y, Kondo K, Miyajima Y, Fujii K (2007) Histological examination of false positive tissue resection using 5-aminolevulinic acid-induced fluorescence guidance. Neurol Med Chir 47:210–213 (discussion 213–214)

    Article  Google Scholar 

  8. Kamp MA, Grosser P, Felsberg J, Slotty PJ, Steiger HJ, Reifenberger G, Sabel M (2012) 5-Aminolevulinic acid (5-ALA)-induced fluorescence in intracerebral metastases: a retrospective study. Acta Neurochir (Wien) 154:223–228. https://doi.org/10.1007/s00701-011-1200-5 (discussion 228)

    Article  Google Scholar 

  9. Parvez K, Parvez A, Zadeh G (2014) The diagnosis and treatment of pseudoprogression, radiation necrosis and brain tumor recurrence. Int J Mol Sci 15:11832–11846. https://doi.org/10.3390/ijms150711832

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kumar AJ, Leeds NE, Fuller GN, Van Tassel P, Maor MH, Sawaya RE, Levin VA (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384. https://doi.org/10.1148/radiology.217.2.r00nv36377

    Article  CAS  PubMed  Google Scholar 

  11. Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461. https://doi.org/10.1016/S1470-2045(08)70125-6

    Article  PubMed  Google Scholar 

  12. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151:264–269

    Article  Google Scholar 

  13. Hoover JM, Nwojo M, Puffer R, Mandrekar J, Meyer FB, Parney IF (2013) Surgical outcomes in recurrent glioma clinical article. J Neurosurg 118:1224–1231. https://doi.org/10.3171/2013.2.Jns121731

    Article  PubMed  Google Scholar 

  14. Schucht P, Knittel S, Slotboom J, Seidel K, Murek M, Jilch A, Raabe A, Beck J (2014) 5-ALA complete resections go beyond MR contrast enhancement: shift corrected volumetric analysis of the extent of resection in surgery for glioblastoma. Acta Neurochir (Wien) 156:305–312. https://doi.org/10.1007/s00701-013-1906-7 (discussion 312)

    Article  Google Scholar 

  15. Della Puppa A, Ciccarino P, Lombardi G, Rolma G, Cecchin D, Rossetto M (2014) 5-Aminolevulinic acid fluorescence in high grade glioma surgery: surgical outcome, intraoperative findings, and fluorescence patterns. Biomed Res Int 2014:232561. https://doi.org/10.1155/2014/232561

    Article  CAS  PubMed  Google Scholar 

  16. Idoate MA, Valle RD, Echeveste J, Tejada S (2011) Pathological characterization of the glioblastoma border as shown during surgery using 5-aminolevulinic acid-induced fluorescence. Neuropathology 31:575–582. https://doi.org/10.1111/j.1440-1789.2011.01202.x

    Article  PubMed  Google Scholar 

  17. Tonn JC, Stummer W (2008) Fluorescence-guided resection of malignant gliomas using 5-aminolevulinic acid: practical use, risks, and pitfalls. Clin Neurosurg 55:20–26

    PubMed  Google Scholar 

  18. Stummer W, Tonn JC, Goetz C, Ullrich W, Stepp H, Bink A, Pietsch T, Pichlmeier U (2014) 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery 74:310–319. https://doi.org/10.1227/Neu.0000000000000267

    Article  PubMed  Google Scholar 

  19. Hickmann AK, Nadji-Ohl M, Hopf NJ (2015) Feasibility of fluorescence-guided resection of recurrent gliomas using five-aminolevulinic acid: retrospective analysis of surgical and neurological outcome in 58 patients. J Neuro-oncol 122:151–160. https://doi.org/10.1007/s11060-014-1694-9

    Article  CAS  Google Scholar 

  20. Kamp MA, Felsberg J, Sadat H, Kuzibaev J, Steiger HJ, Rapp M, Reifenberger G, Dibue M, Sabel M (2015) 5-ALA-induced fluorescence behavior of reactive tissue changes following glioblastoma treatment with radiation and chemotherapy. Acta Neurochir (Wien) 157:207–213. https://doi.org/10.1007/s00701-014-2313-4 (discussion 213–204)

    Article  Google Scholar 

  21. Wachter D, Kallenberg K, Wrede A, Schulz-Schaeffer W, Behm T, Rohde V (2012) Fluorescence-guided operation in recurrent glioblastoma multiforme treated with bevacizumab-fluorescence of the noncontrast enhancing tumor tissue? J Neurol Surg A 73:401–406. https://doi.org/10.1055/s-0032-1304810

    Article  Google Scholar 

  22. Tykocki T, Michalik R, Bonicki W, Nauman P (2012) Fluorescence-guided resection of primary and recurrent malignant gliomas with 5-aminolevulinic acid. Preliminary results. Neurol Neurochir Pol 46:47–51

    Article  CAS  Google Scholar 

  23. Hefti M, von Campe G, Moschopulos M, Siegner A, Looser H, Landolt H (2008) 5-Aminolevulinic acid induced protoporphyrin IX fluorescence in high-grade glioma surgery: a one-year experience at a single institutuion. Swiss Med Wkly 138:180–185

    CAS  PubMed  Google Scholar 

  24. Panciani PP, Fontanella M, Garbossa D, Agnoletti A, Ducati A, Lanotte M (2012) 5-Aminolevulinic acid and neuronavigation in high-grade glioma surgery: results of a combined approach. Neurocirugia (Astur) 23:23–28. https://doi.org/10.1016/j.neucir.2012.04.003

    Article  Google Scholar 

  25. Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013. https://doi.org/10.3171/jns.2000.93.6.1003

    Article  CAS  PubMed  Google Scholar 

  26. Dietze A, Berg K (2005) ALA-induced porphyrin formation and fluorescence in synovitis tissue in-vitro and in vivo studies. Photodiagn Photodyn Ther 2:299–307. https://doi.org/10.1016/S1572-1000(05)00107-9

    Article  CAS  Google Scholar 

  27. Dietel W, Bolsen K, Dickson E, Fritsch C, Pottier R, Wendenburg R (1996) Formation of water-soluble porphyrins and protoporphyrin IX in 5-aminolevulinic-acid-incubated carcinoma cells. J Photochem Photobiol B 33:225–231. https://doi.org/10.1016/1011-1344(95)07249-7

    Article  CAS  PubMed  Google Scholar 

  28. Polo CF, Frisardi AL, Resnik ER, Schoua AEM, Batlle AMD (1988) Factors influencing fluorescence-spectra of free porphyrins. Clin Chem 34:757–760

    CAS  PubMed  Google Scholar 

  29. Valle RD, Solis ST, Gastearena MAI, de Eulate RG, Echavarri PD, Mendiroz JA (2011) Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience. J Neuro-Oncol 102:105–113. https://doi.org/10.1007/s11060-010-0296-4

    Article  CAS  Google Scholar 

  30. Saito K, Hirai T, Takeshima H, Kadota Y, Yamashita S, Ivanova A, Yokogami K (2017) Genetic factors affecting intraoperative 5-aminolevulinic acid-induced fluorescence of diffuse gliomas. Radiol Oncol 51:142–150. https://doi.org/10.1515/raon-2017-0019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roberts DW, Valdes PA, Harris BT, Fontaine KM, Hartov A, Fan X, Ji S, Lollis SS, Pogue BW, Leblond F, Tosteson TD, Wilson BC, Paulsen KD (2011) Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between delta-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article. J Neurosurg 114:595–603. https://doi.org/10.3171/2010.2.JNS091322

    Article  PubMed  Google Scholar 

  32. Johansson A, Palte G, Schnell O, Tonn JC, Herms J, Stepp H (2010) 5-Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors. Photochem Photobiol 86:1373–1378. https://doi.org/10.1111/j.1751-1097.2010.00799.x

    Article  CAS  PubMed  Google Scholar 

  33. Kim A, Khurana M, Moriyama Y, Wilson BC (2010) Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements. J Biomed Opt. https://doi.org/10.1117/1.3523616

    Article  PubMed  PubMed Central  Google Scholar 

  34. Valdes PA, Leblond F, Kim A, Harris BT, Wilson BC, Fan XY, Tosteson TD, Hartov A, Ji SB, Erkmen K, Simmons NE, Paulsen KD, Roberts DW (2011) Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. J Neurosurg 115:11–17. https://doi.org/10.3171/2011.2.Jns101451

    Article  PubMed  PubMed Central  Google Scholar 

  35. Utsuki S, Oka H, Sato S, Suzuki S, Shimizu S, Tanaka S, Fujii K (2006) Possibility of using laser spectroscopy for the intraoperative detection of nonfluorescing brain tumors and the boundaries of brain tumor infiltrates—technical note. J Neurosurg 104:618–620. https://doi.org/10.3171/jns.2006.104.4.618

    Article  PubMed  Google Scholar 

  36. Valdes PA, Kim A, Brantsch M, Niu C, Moses ZB, Tosteson TD, Wilson BC, Paulsen KD, Roberts DW, Harris BT (2011) Delta-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy. Neuro-oncology 13:846–856. https://doi.org/10.1093/neuonc/nor086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Omar Chohan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chohan, M.O., Berger, M.S. 5-Aminolevulinic acid fluorescence guided surgery for recurrent high-grade gliomas. J Neurooncol 141, 517–522 (2019). https://doi.org/10.1007/s11060-018-2956-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-018-2956-8

Keywords

Navigation