Skip to main content

Advertisement

Log in

Concepts of immunotherapy for glioma

  • Editors' Invited Manuscript
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Immunotherapy is coming to the fore as a viable anti-cancer treatment modality, even in poorly immunogenic cancers such as glioblastoma (GBM). Accumulating evidence suggests that the central nervous system may not be impervious to tumor-specific immune cells and could be an adequate substrate for immunologic anti-cancer therapies. Recent advances in antigen-specific cancer vaccines and checkpoint blockade in GBM provide promise for future immunotherapy in glioma. As anti-GBM immunotherapeutics enter clinical trials, it is important to understand the interactions, if any, between immune-based treatment modalities and the current standard of care for GBM involving chemoradiation and steroid therapy. Current data suggests that chemoradiation may not preclude the success of immunotherapeutics, as their effects may be synergistic. The future of therapy for GBM lies in the power of combination modalities, involving immunotherapy and the current standard of care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Drake CG (2010) Prostate cancer as a model for tumour immunotherapy. Nat Rev Immunol 10:580–593. doi:10.1038/nri2817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Lipson EJ, Drake CG (2011) Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res 17:6958–6962. doi:10.1158/1078-0432.ccr-11-1595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Buckner JC (2003) Factors influencing survival in high-grade gliomas. Semin Oncol 30:10–14

    Article  PubMed  Google Scholar 

  4. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. doi:10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  5. DeAngelis LM (2001) Brain tumors. N Engl J Med 344:114–123. doi:10.1056/nejm200101113440207

    Article  CAS  PubMed  Google Scholar 

  6. Nagasawa DT, Chow F, Yew A, Kim W, Cremer N, Yang I (2012) Temozolomide and other potential agents for the treatment of glioblastoma multiforme. Neurosurg Clin N Am 23:307–322. doi:10.1016/j.nec.2012.01.007

    Article  PubMed  Google Scholar 

  7. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998. doi:10.1038/ni1102-991

    Article  CAS  PubMed  Google Scholar 

  8. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science (New York, NY) 331:1565–1570. doi:10.1126/science.1203486

    Article  CAS  Google Scholar 

  9. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360. doi:10.1146/annurev.immunol.22.012703.104803

    Article  CAS  PubMed  Google Scholar 

  10. Gresser I, Bourali C (1970) Antitumor effects of interferon preparations in mice. J Natl Cancer Inst 45:365–376

    CAS  PubMed  Google Scholar 

  11. Gresser I, Boqali C, Chouroulinkov I, Fontaine-Brouty-Byé D, Thomas MT (1970) Treatment of Neoplasia in mice with interferon preparations. Ann N Y Acad Sci 173:694–707

    Article  CAS  Google Scholar 

  12. Fewkes NM, Mackall CL (2010) Novel gamma-chain cytokines as candidate immune modulators in immune therapies for cancer. Cancer J (Sudbury, Mass) 16:392–398. doi:10.1097/PPO.0b013e3181eacbc4

    Article  CAS  Google Scholar 

  13. Mazzucchelli R, Durum SK (2007) Interleukin-7 receptor expression: intelligent design. Nat Rev Immunol 7:144–154. doi:10.1038/nri2023

    Article  CAS  PubMed  Google Scholar 

  14. Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4:1191–1198. doi:10.1038/ni1009

    Article  CAS  PubMed  Google Scholar 

  15. Murphy WJ, Back TC, Conlon KC, Komschlies KL, Ortaldo JR, Sayers TJ, Wiltrout RH, Longo DL (1993) Antitumor effects of interleukin-7 and adoptive immunotherapy on human colon carcinoma xenografts. J Clin Investig 92:1918–1924. doi:10.1172/jci116785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Jicha DL, Mule JJ, Rosenberg SA (1991) Interleukin 7 generates antitumor cytotoxic T lymphocytes against murine sarcomas with efficacy in cellular adoptive immunotherapy. J Exp Med 174:1511–1515

    Article  CAS  PubMed  Google Scholar 

  17. Aoki T, Tashiro K, Miyatake S, Kinashi T, Nakano T, Oda Y, Kikuchi H, Honjo T (1992) Expression of murine interleukin 7 in a murine glioma cell line results in reduced tumorigenicity in vivo. Proc Natl Acad Sci USA 89:3850–3854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Fritzell S, Eberstal S, Sanden E, Visse E, Darabi A, Siesjo P (2013) IFNgamma in combination with IL-7 enhances immunotherapy in two rat glioma models. J Neuroimmunol 258:91–95. doi:10.1016/j.jneuroim.2013.02.017

    Article  CAS  PubMed  Google Scholar 

  19. Westermann J, Florcken A, Willimsky G, van Lessen A, Kopp J, Takvorian A, Johrens K, Lukowsky A, Schonemann C, Sawitzki B, Pohla H, Frank R, Dorken B, Schendel DJ, Blankenstein T, Pezzutto A (2011) Allogeneic gene-modified tumor cells (RCC-26/IL-7/CD80) as a vaccine in patients with metastatic renal cell cancer: a clinical phase-I study. Gene Ther 18:354–363. doi:10.1038/gt.2010.143

    Article  CAS  PubMed  Google Scholar 

  20. Sportes C, Babb RR, Krumlauf MC, Hakim FT, Steinberg SM, Chow CK, Brown MR, Fleisher TA, Noel P, Maric I, Stetler-Stevenson M, Engel J, Buffet R, Morre M, Amato RJ, Pecora A, Mackall CL, Gress RE (2010) Phase I study of recombinant human interleukin-7 administration in subjects with refractory malignancy. Clin Cancer Res 16:727–735. doi:10.1158/1078-0432.ccr-09-1303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Klebanoff CA, Finkelstein SE, Surman DR, Lichtman MK, Gattinoni L, Theoret MR, Grewal N, Spiess PJ, Antony PA, Palmer DC, Tagaya Y, Rosenberg SA, Waldmann TA, Restifo NP (2004) IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci USA 101:1969–1974. doi:10.1073/pnas.0307298101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Brentjens RJ, Latouche JB, Santos E, Marti F, Gong MC, Lyddane C, King PD, Larson S, Weiss M, Riviere I, Sadelain M (2003) Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 9:279–286. doi:10.1038/nm827

    Article  CAS  PubMed  Google Scholar 

  23. Anichini A, Scarito A, Molla A, Parmiani G, Mortarini R (2003) Differentiation of CD8+ T cells from tumor-invaded and tumor-free lymph nodes of melanoma patients: role of common gamma-chain cytokines. J Immunol (Baltimore, Md: 1950) 171:2134–2141

    Article  CAS  Google Scholar 

  24. Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, Oukka M, Kuchroo VK (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448:484–487. doi:10.1038/nature05970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, Ma L, Schluns K, Tian Q, Watowich SS, Jetten AM, Dong C (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448:480–483. doi:10.1038/nature05969

    Article  CAS  PubMed  Google Scholar 

  26. Bucher C, Koch L, Vogtenhuber C, Goren E, Munger M, Panoskaltsis-Mortari A, Sivakumar P, Blazar BR (2009) IL-21 blockade reduces graft-versus-host disease mortality by supporting inducible T regulatory cell generation. Blood 114:5375–5384. doi:10.1182/blood-2009-05-221135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Petrella TM, Tozer R, Belanger K, Savage KJ, Wong R, Smylie M, Kamel-Reid S, Tron V, Chen BE, Hunder NN, Hagerman L, Walsh W, Eisenhauer EA (2012) Interleukin-21 has activity in patients with metastatic melanoma: a phase II study. J Clin Oncol 30:3396–3401. doi:10.1200/jco.2011.40.0655

    Article  CAS  PubMed  Google Scholar 

  28. Vom Berg J, Vrohlings M, Haller S, Haimovici A, Kulig P, Sledzinska A, Weller M, Becher B (2013) Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell-mediated glioma rejection. J Exp Med 210:2803–2811. doi:10.1084/jem.20130678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, Louie AC (1995) Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol 13:688–696

    CAS  PubMed  Google Scholar 

  30. Rosenberg SA (2014) IL-2: the first effective immunotherapy for human cancer. J Immunol (Baltimore, Md: 1950) 192:5451–5458. doi:10.4049/jimmunol.1490019

    Article  CAS  Google Scholar 

  31. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, Restifo NP, Robbins PF, Wunderlich JR, Morton KE, Laurencot CM, Steinberg SM, White DE, Dudley ME (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 17:4550–4557. doi:10.1158/1078-0432.ccr-11-0116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. doi:10.1038/nrc3239

    Article  CAS  PubMed  Google Scholar 

  33. Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, Durham N, Meyer C, Harris TJ, Albesiano E, Pradilla G, Ford E, Wong J, Hammers HJ, Mathios D, Tyler B, Brem H, Tran PT, Pardoll D, Drake CG, Lim M (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86:343–349. doi:10.1016/j.ijrobp.2012.12.025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Freeman GJ, Gribben JG, Boussiotis VA, Ng JW, Restivo VA Jr, Lombard LA, Gray GS, Nadler LM (1993) Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science (New York, NY) 262:909–911

    Article  CAS  Google Scholar 

  35. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174:561–569

    Article  CAS  PubMed  Google Scholar 

  36. Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP, Formenti SC (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 11:728–734

    CAS  PubMed  Google Scholar 

  37. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133. doi:10.1056/NEJMoa1302369

    Article  CAS  PubMed  Google Scholar 

  38. Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B (1987) Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 84:6899–6903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DS, Vogelstein B (1992) Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci USA 89:2965–2969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Heimberger AB, Crotty LE, Archer GE, Hess KR, Wikstrand CJ, Friedman AH, Friedman HS, Bigner DD, Sampson JH (2003) Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clin Cancer Res 9:4247–4254

    CAS  PubMed  Google Scholar 

  41. Wikstrand CJ, Hale LP, Batra SK, Hill ML, Humphrey PA, Kurpad SN, McLendon RE, Moscatello D, Pegram CN, Reist CJ et al (1995) Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 55:3140–3148

    CAS  PubMed  Google Scholar 

  42. Sampson JH, Archer GE, Mitchell DA, Heimberger AB, Herndon JE 2nd, Lally-Goss D, McGehee-Norman S, Paolino A, Reardon DA, Friedman AH, Friedman HS, Bigner DD (2009) An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther 8:2773–2779. doi:10.1158/1535-7163.mct-09-0124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. doi:10.1056/NEJMoa1003466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Robert C, Thomas L, Bondarenko I, O’Day S, Webber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, Davidson N, Richards J, Maio M, Hauschild A, Miller WH Jr, Gascon P, Lotem M, Harmankaya K, Ibrahim R, Francis S, Chen TT, Humphrey R, Hoos A, Wolchok JD (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526. doi:10.1056/NEJMoa1104621

    Article  CAS  PubMed  Google Scholar 

  45. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, Dronca R, Gangadhar TC, Patnaik A, Zarour H, Joshua AM, Gergich K, Elassaiss-Schaap J, Algazi A, Mateus C, Boasberg P, Tumeh PC, Chmielowski B, Ebbinghaus SW, Li XN, Kang SP, Ribas A (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369:134–144. doi:10.1056/NEJMoa1305133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Bloch O, Crane CA, Fuks Y, Kaur R, Aghi MK, Berger MS, Butowski NA, Chang SM, Clarke JL, McDermott MW, Prados MD, Sloan AE, Bruce JN, Parsa AT (2014) Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. Neuro-oncology 16:274–279. doi:10.1093/neuonc/not203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang H, Nuno MA, Richardson JE, Fan X, Ji J, Chu RM, Bender JG, Hawkins ES, Patil CG, Black KL, Yu JS (2013) Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother 62:125–135. doi:10.1007/s00262-012-1319-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Swartz AM, Li QJ, Sampson JH (2014) Rindopepimut: a promising immunotherapeutic for the treatment of glioblastoma multiforme. Immunotherapy 6:679–690. doi:10.2217/imt.14.21

    Article  CAS  PubMed  Google Scholar 

  49. A Randomized Study of Nivolumab Versus Bevacizumab and a Safety Study of Nivolumab or Nivolumab Combined With Ipilimumab in Adult Subjects With Recurrent Glioblastoma (GBM) (CheckMate 143). clinicaltrials.gov

  50. Medawar PB (1948) Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 29:58–69

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Davies DC (2002) Blood-brain barrier breakdown in septic encephalopathy and brain tumours. J Anat 200:639–646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Rascher G, Fischmann A, Kroger S, Duffner F, Grote EH, Wolburg H (2002) Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin. Acta Neuropathol 104:85–91. doi:10.1007/s00401-002-0524-x

    Article  CAS  PubMed  Google Scholar 

  53. van Zwam M, Huizinga R, Melief MJ, Wierenga-Wolf AF, van Meurs M, Voerman JS, Biber KP, Boddeke HW, Hopken UE, Meisel C, Meisel A, Bechmann I, Hintzen RQ, t Hart BA, Amor S, Laman JD, Boven LA (2009) Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE. J Mol Med (Berlin, Germany) 87:273–286. doi:10.1007/s00109-008-0421-4

    Article  Google Scholar 

  54. Goldmann J, Kwidzinski E, Brandt C, Mahlo J, Richter D, Bechmann I (2006) T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J Leukoc Biol 80:797–801. doi:10.1189/jlb.0306176

    Article  CAS  PubMed  Google Scholar 

  55. Cserr HF, Harling-Berg CJ, Knopf PM (1992) Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol (Zurich, Switzerland) 2:269–276

    Article  CAS  Google Scholar 

  56. Yeung JT, Hamilton RL, Ohnishi K, Ikeura M, Potter DM, Nikiforova MN, Ferrone S, Jakacki RI, Pollack IF, Okada H (2013) LOH in the HLA class I region at 6p21 is associated with shorter survival in newly diagnosed adult glioblastoma. Clin Cancer Res 19:1816–1826. doi:10.1158/1078-0432.ccr-12-2861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Grossman SA, Ye X, Lesser G, Sloan A, Carraway H, Desideri S, Piantadosi S (2011) Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin Cancer Res 17:5473–5480. doi:10.1158/1078-0432.ccr-11-0774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28:254–260. doi:10.1002/jnr.490280213

    Article  CAS  PubMed  Google Scholar 

  59. Prins RM, Shu CJ, Radu CG, Vo DD, Khan-Farooqi H, Soto H, Yang MY, Lin MS, Shelly S, Witte ON, Ribas A, Liau LM (2008) Anti-tumor activity and trafficking of self, tumor-specific T cells against tumors located in the brain. Cancer Immunol Immunother 57:1279–1289. doi:10.1007/s00262-008-0461-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Odoardi F, Sie C, Streyl K, Ulaganathan VK, Schlager C, Lodygin D, Heckelsmiller K, Nietfeld W, Ellwart J, Klinkert WE, Lottaz C, Nosov M, Brinkmann V, Spang R, Lehrach H, Vingron M, Wekerle H, Flugel-Koch C, Flugel A (2012) T cells become licensed in the lung to enter the central nervous system. Nature 488:675–679. doi:10.1038/nature11337

    Article  CAS  PubMed  Google Scholar 

  61. Masson F, Calzascia T, Di Berardino-Besson W, de Tribolet N, Dietrich PY, Walker PR (2007) Brain microenvironment promotes the final functional maturation of tumor-specific effector CD8+ T cells. J Immunol (Baltimore, Md: 1950) 179:845–853

    Article  CAS  Google Scholar 

  62. Ransohoff RM, Cardona AE (2010) The myeloid cells of the central nervous system parenchyma. Nature 468:253–262. doi:10.1038/nature09615

    Article  CAS  PubMed  Google Scholar 

  63. Varvel NH, Grathwohl SA, Baumann F, Liebig C, Bosch A, Brawek B, Thal DR, Charo IF, Heppner FL, Aguzzi A, Garaschuk O, Ransohoff RM, Jucker M (2012) Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc Natl Acad Sci USA 109:18150–18155. doi:10.1073/pnas.1210150109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Carson MJ, Sutcliffe JG, Campbell IL (1999) Microglia stimulate naive T-cell differentiation without stimulating T-cell proliferation. J Neurosci Res 55:127–134

    Article  CAS  PubMed  Google Scholar 

  65. Yang I, Han SJ, Kaur G, Crane C, Parsa AT (2010) The role of microglia in central nervous system immunity and glioma immunology. J Clin Neurosci 17:6–10. doi:10.1016/j.jocn.2009.05.006

    Article  PubMed Central  PubMed  Google Scholar 

  66. Okada H, Mak TW (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4:592–603. doi:10.1038/nrc1412

    Article  CAS  PubMed  Google Scholar 

  67. Lake RA, Robinson BW (2005) Immunotherapy and chemotherapy–a practical partnership. Nat Rev Cancer 5:397–405. doi:10.1038/nrc1613

    Article  CAS  PubMed  Google Scholar 

  68. Heimberger AB, Sun W, Hussain SF, Dey M, Crutcher L, Aldape K, Gilbert M, Hassenbusch SJ, Sawaya R, Schmittling B, Archer GE, Mitchell DA, Bigner DD, Sampson JH (2008) Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: case study. Neuro-oncology 10:98–103. doi:10.1215/15228517-2007-046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Banissi C, Ghiringhelli F, Chen L, Carpentier AF (2009) Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother 58:1627–1634. doi:10.1007/s00262-009-0671-1

    Article  CAS  PubMed  Google Scholar 

  70. Gough MJ, Crittenden MR (2009) Combination approaches to immunotherapy: the radiotherapy example. Immunotherapy 1:1025–1037. doi:10.2217/imt.09.64

    Article  PubMed  Google Scholar 

  71. Tesniere A, Apetoh L, Ghiringhelli F, Joza N, Panaretakis T, Kepp O, Schlemmer F, Zitvogel L, Kroemer G (2008) Immunogenic cancer cell death: a key-lock paradigm. Curr Opin Immunol 20:504–511. doi:10.1016/j.coi.2008.05.007

    Article  CAS  PubMed  Google Scholar 

  72. Skoberne M, Beignon AS, Bhardwaj N (2004) Danger signals: a time and space continuum. Trends Mol Med 10:251–257. doi:10.1016/j.molmed.2004.04.001

    Article  CAS  PubMed  Google Scholar 

  73. Gasser S, Orsulic S, Brown EJ, Raulet DH (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436:1186–1190. doi:10.1038/nature03884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Larsson M, Fonteneau JF, Bhardwaj N (2001) Dendritic cells resurrect antigens from dead cells. Trends Immunol 22:141–148

    Article  CAS  PubMed  Google Scholar 

  75. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059. doi:10.1038/nm1622

    Article  CAS  PubMed  Google Scholar 

  76. Belcaid Z, Phallen JA, Zeng J, See AP, Mathios D, Gottschalk C, Nicholas S, Kellett M, Ruzevick J, Jackson C, Albesiano E, Durham NM, Ye X, Tran PT, Tyler B, Wong JW, Brem H, Pardoll DM, Drake CG, Lim M (2014) Focal radiation therapy combined with 4-1BB activation and CTLA-4 blockade yields long-term survival and a protective antigen-specific memory response in a murine glioma model. PLoS One 9:e101764. doi:10.1371/journal.pone.0101764

    Article  PubMed Central  PubMed  Google Scholar 

  77. Slovin SF, Higano CS, Hamid O, Tejwani S, Harzstark A, Alumkal JJ, Scher HI, Chin K, Gagnier P, McHenry MB, Beer TM (2013) Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol 24:1813–1821. doi:10.1093/annonc/mdt107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Chen X, Murakami T, Oppenheim JJ, Howard OM (2004) Differential response of murine CD4+ CD25+ and CD4+ CD25- T cells to dexamethasone-induced cell death. Eur J Immunol 34:859–869. doi:10.1002/eji.200324506

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drew M. Pardoll.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, M.A., Pardoll, D.M. Concepts of immunotherapy for glioma. J Neurooncol 123, 323–330 (2015). https://doi.org/10.1007/s11060-015-1810-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1810-5

Keywords

Navigation