Skip to main content

Advertisement

Log in

The prognostic significance of serum and cerebrospinal fluid MMP-9, CCL2 and sVCAM-1 in leukemia CNS metastasis

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Metastasis to the central nervous system (CNS) is the primary obstacle in leukemia treatment. Matrix metalloproteinase-9 (MMP-9), chemokine ligand-2 (CCL2) and soluble vascular adhesion molecule-1 (sVCAM-1) play crucial roles in tumor cell adhesion, motivation and survival, but their roles in leukemia CNS metastasis remain to be elucidated. We investigated the prognostic significance of serum and cerebrospinal fluid (CSF) MMP-9, CCL2 and sVCAM-1 in leukemia patients to explore their potential as predictive biomarkers of the development of CNS leukemia (CNSL). MMP-9, CCL2 and sVCAM-1 were measured in paired CSF and serum samples collecting from 33 leukemia patients with or without CNS metastasis. Other risk factors related to CNSL prognosis were also analyzed. sVCAM-1Serum and CCL2Serum/CSF were significantly higher in the CNSL group than in the non-CNSL group and the controls (p < 0.05). MMP-9Serum was insignificantly lower in the CNSL group than in the non-CNSL group and the controls (p > 0.05). No differences were found for the sVCAM-1Serum, CCL2Serum, and MMP-9Serum levels between non-CNSL patients and controls (p > 0.05). MMP-9CSF was significantly higher in the CNSL group than both the non-CNSL and the control groups (p < 0.05). The indexes of sVCAM-1, CCL2, and MMP-9 in the CNSL group were lower than in the controls (p < 0.05). Positive correlations were determined between the MMP-9CSF and the ALBCSF/BBB value/WBCCSF, between sVCAM-1Serum and the WBCCSF/BBB value. Negative correlations existed between MMP-9Serum and the ALBCSF/BBB value/WBCCSF, and between the CCL2 index and ALBCSF. sVCAM-1Serum was positively associated with event-free survival (EFS), and patients with higher levels of ALBCSF, MMP-9CSF/Serum, CCL2CSF/Serum, and sVCAM-1CSF/Serum had shorter EFS. MMP-9CSF, CCL2CSF and sVCAM-1CSF are the first three principal components analyzed by cluster and principal component analysis. Our data suggest that MMP-9, CCL2 and sVCAM-1 in the CSF may be more potent than serum in predicting the possibility of leukemia metastatic CNS and the outcome of CNSL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Soto MS et al (2014) Functional role of endothelial adhesion molecules in the early stages of brain metastasis. Neuro Oncol 16(4):540–551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Lazarus HM et al (2006) Central nervous system involvement in adult acute lymphoblastic leukemia at diagnosis: results from the international ALL trial MRC UKALL XII/ECOG E2993. Blood 108(2):465–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Law IP, Blom J (1976) Adult central nervous system leukemia: incidence and clinicopathologic features. South Med J 69(8):1054–1057

    Article  CAS  PubMed  Google Scholar 

  4. Jabbour E et al (2010) Central nervous system prophylaxis in adults with acute lymphoblastic leukemia: current and emerging therapies. Cancer 116(10):2290–2300

    CAS  PubMed  Google Scholar 

  5. Huber JD, Egleton RD, Davis TP (2001) Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci 24(12):719–725

    Article  CAS  PubMed  Google Scholar 

  6. Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3(7):569–581

    Article  CAS  PubMed  Google Scholar 

  7. Hickey WF (1999) Leukocyte traffic in the central nervous system: the participants and their roles. Semin Immunol 11(2):125–137

    Article  CAS  PubMed  Google Scholar 

  8. Price JT, Thompson EW (2002) Mechanisms of tumour invasion and metastasis: emerging targets for therapy. Expert Opin Ther Targets 6(2):217–233

    Article  CAS  PubMed  Google Scholar 

  9. Izraely S et al (2010) Chemokine-chemokine receptor axes in melanoma brain metastasis. Immunol Lett 130(1–2):107–114

    Article  CAS  PubMed  Google Scholar 

  10. Frenette PS, Wagner DD (1996) Adhesion molecules—Part 1. N Engl J Med 334(23):1526–1529

    Article  CAS  PubMed  Google Scholar 

  11. Frenette PS, Wagner DD (1996) Adhesion molecules–Part II: blood vessels and blood cells. N Engl J Med 335(1):43–45

    Article  CAS  PubMed  Google Scholar 

  12. Alexiou D et al (2001) Serum levels of E-selectin, ICAM-1 and VCAM-1 in colorectal cancer patients: correlations with clinicopathological features, patient survival and tumour surgery. Eur J Cancer 37(18):2392–2397

    Article  CAS  PubMed  Google Scholar 

  13. Christiansen I et al (1999) Serum levels of soluble vascular cell adhesion molecule-1 (sVCAM-1) are elevated in advanced stages of non-Hodgkin’s lymphomas. Eur J Haematol 62(3):202–209

    Article  CAS  PubMed  Google Scholar 

  14. Hatzistilianou M et al (1997) Circulating soluble adhesion molecule levels in children with acute lymphoblastic leukaemia. Eur J Pediatr 156(7):537–540

    Article  CAS  PubMed  Google Scholar 

  15. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147(2):275–292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yilmaz M, Christofori G, Lehembre F (2007) Distinct mechanisms of tumor invasion and metastasis. Trends Mol Med 13(12):535–541

    Article  CAS  PubMed  Google Scholar 

  17. Basu SK et al (2014) Breaking and entering into the CNS: clues from solid tumor and nonmalignant models with relevance to hematopoietic malignancies. Clin Exp Metastasis 31(2):257–267

    Article  PubMed  Google Scholar 

  18. Feng S et al (2011) Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS One 6(8):e20599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Burgess M et al (2012) CCL2 and CXCL2 enhance survival of primary chronic lymphocytic leukemia cells in vitro. Leuk Lymphoma 53(10):1988–1998

    Article  CAS  PubMed  Google Scholar 

  20. Eugenin EA et al (2006) CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci 26(4):1098–1106

    Article  CAS  PubMed  Google Scholar 

  21. Schilling M et al (2009) Effects of monocyte chemoattractant protein 1 on blood-borne cell recruitment after transient focal cerebral ischemia in mice. Neuroscience 161(3):806–812

    Article  CAS  PubMed  Google Scholar 

  22. Eisenkraft A et al (2006) MCP-1 in the cerebrospinal fluid of children with acute lymphoblastic leukemia. Leuk Res 30(10):1259–1261

    Article  CAS  PubMed  Google Scholar 

  23. Civini S et al (2013) Leukemia cells induce changes in human bone marrow stromal cells. J Transl Med 11:298

    Article  PubMed Central  PubMed  Google Scholar 

  24. Syrigos KN et al (2004) Prognostic significance of soluble adhesion molecules in Hodgkin’s disease. Anticancer Res 24(2C):1243–1247

    CAS  PubMed  Google Scholar 

  25. Velikova G et al (1998) Serum concentrations of soluble adhesion molecules in patients with colorectal cancer. Br J Cancer 77(11):1857–1863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Nakata B et al (2000) Clinical significance of serum soluble intercellular adhesion molecule 1 in gastric cancer. Clin Cancer Res 6(3):1175–1179

    CAS  PubMed  Google Scholar 

  27. Wang WL et al (2013) Concomitantly elevated serum matrix metalloproteinases 3 and 9 can predict survival of synchronous squamous cell carcinoma of the upper aero-digestive tract. Mol Carcinog 52(6):438–445

    Article  CAS  PubMed  Google Scholar 

  28. Pranzatelli MR et al (2012) Key role of CXCL13/CXCR5 axis for cerebrospinal fluid B cell recruitment in pediatric OMS. J Neuroimmunol 243(1–2):81–88

    Article  CAS  PubMed  Google Scholar 

  29. Tang YT et al (2013) Expression and significance of vascular endothelial growth factor A and C in leukemia central nervous system metastasis. Leuk Res 37(4):359–366

    Article  CAS  PubMed  Google Scholar 

  30. Tang YT et al (2013) The soluble VEGF receptor 1 and 2 expression in cerebral spinal fluid as an indicator for leukemia central nervous system metastasis. J Neurooncol 112(3):329–338

    Article  CAS  PubMed  Google Scholar 

  31. Mastrangelo R et al (1986) Report and recommendations of the Rome workshop concerning poor-prognosis acute lymphoblastic leukemia in children: biologic bases for staging, stratification, and treatment. Med Pediatr Oncol 14(3):191–194

    Article  CAS  PubMed  Google Scholar 

  32. van der Flier M et al (2001) Vascular endothelial growth factor in bacterial meningitis: detection in cerebrospinal fluid and localization in postmortem brain. J Infect Dis 183(1):149–153

    Article  PubMed  Google Scholar 

  33. Sargent DJ et al (2005) Disease-free survival versus overall survival as a primary end point for adjuvant colon cancer studies: individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol 23(34):8664–8670

    Article  PubMed  Google Scholar 

  34. Kainerstorfer JM et al (2013) Evaluation of non-invasive multispectral imaging as a tool for measuring the effect of systemic therapy in Kaposi sarcoma. PLoS One 8(12):e83887

    Article  PubMed Central  PubMed  Google Scholar 

  35. Sturgeon CM et al (2008) National Academy of clinical biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem 54(12):e11–e79

    Article  CAS  PubMed  Google Scholar 

  36. Glantz MJ et al (1998) Cerebrospinal fluid cytology in patients with cancer: minimizing false-negative results. Cancer 82(4):733–739

    Article  CAS  PubMed  Google Scholar 

  37. Moriarty AT et al (1993) Immunophenotyping of cytologic specimens by flow cytometry. Diagn Cytopathol 9(3):252–258

    Article  CAS  PubMed  Google Scholar 

  38. Mavlight GM et al (1980) Diagnosis of leukemia or lymphoma in the central nervous system by beta 2-microglobulin determination. N Engl J Med 303(13):718–722

    Article  CAS  PubMed  Google Scholar 

  39. Rajantie J et al (1989) CSF fibronectin in Burkitt’s lymphoma: an early marker for CNS involvement. Eur J Haematol 42(3):313–314

    Article  CAS  PubMed  Google Scholar 

  40. Weller M et al (1991) Comparative analysis of cytokine patterns in immunological, infectious, and oncological neurological disorders. J Neurol Sci 104(2):215–221

    Article  CAS  PubMed  Google Scholar 

  41. Hegde U et al (2005) High incidence of occult leptomeningeal disease detected by flow cytometry in newly diagnosed aggressive B-cell lymphomas at risk for central nervous system involvement: the role of flow cytometry versus cytology. Blood 105(2):496–502

    Article  CAS  PubMed  Google Scholar 

  42. Van Etten RA (2007) Aberrant cytokine signaling in leukemia. Oncogene 26(47):6738–6749

    Article  PubMed Central  PubMed  Google Scholar 

  43. Kornblau SM et al (2010) Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia. Blood 116(20):4251–4261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Lorger M et al (2011) Comparison of in vitro and in vivo approaches to studying brain colonization by breast cancer cells. J Neurooncol 104(3):689–696

    Article  CAS  PubMed  Google Scholar 

  45. Sawada T et al (2006) TGF-beta1 down-regulates ICAM-1 expression and enhances liver metastasis of pancreatic cancer. Adv Med Sci 51:60–65

    CAS  PubMed  Google Scholar 

  46. Sawa Y et al (2008) LPS-induced IL-6, IL-8, VCAM-1, and ICAM-1 expression in human lymphatic endothelium. J Histochem Cytochem 56(2):97–109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Prinz M, Priller J (2010) Tickets to the brain: role of CCR2 and CX3CR1 in myeloid cell entry in the CNS. J Neuroimmunol 224(1–2):80–84

    Article  CAS  PubMed  Google Scholar 

  48. Selenica ML et al (2013) Diverse activation of microglia by chemokine (C-C motif) ligand 2 overexpression in brain. J Neuroinflammation 10:86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Huang DR et al (2001) Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 193(6):713–726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Berman JW et al (1996) Localization of monocyte chemoattractant peptide-1 expression in the central nervous system in experimental autoimmune encephalomyelitis and trauma in the rat. J Immunol 156(8):3017–3023

    CAS  PubMed  Google Scholar 

  51. Mastroianni CM et al (1998) Chemokine profiles in the cerebrospinal fluid (CSF) during the course of pyogenic and tuberculous meningitis. Clin Exp Immunol 114(2):210–214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Edwards KR et al (2013) Feasibility of the use of combinatorial chemokine arrays to study blood and CSF in multiple sclerosis. PLoS One 8(11):e81007

    Article  PubMed Central  PubMed  Google Scholar 

  53. Stockhammer G et al (2000) Vascular endothelial growth factor in CSF: a biological marker for carcinomatous meningitis. Neurology 54(8):1670–1676

    Article  CAS  PubMed  Google Scholar 

  54. Banisadr G et al (2005) Highly regionalized neuronal expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) in rat brain: evidence for its colocalization with neurotransmitters and neuropeptides. J Comp Neurol 489(3):275–292

    Article  CAS  PubMed  Google Scholar 

  55. Gerard C, Rollins BJ (2001) Chemokines and disease. Nat Immunol 2(2):108–115

    Article  CAS  PubMed  Google Scholar 

  56. Biber K, Vinet J, Boddeke HW (2008) Neuron-microglia signaling: chemokines as versatile messengers. J Neuroimmunol 198(1–2):69–74

    Article  CAS  PubMed  Google Scholar 

  57. Yang G et al (2011) Neuronal MCP-1 mediates microglia recruitment and neurodegeneration induced by the mild impairment of oxidative metabolism. Brain Pathol 21(3):279–297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Mathieu P et al (2010) The more you have, the less you get: the functional role of inflammation on neuronal differentiation of endogenous and transplanted neural stem cells in the adult brain. J Neurochem 112(6):1368–1385

    Article  CAS  PubMed  Google Scholar 

  59. Langert KA, Von Zee CL, Stubbs EB Jr (2013) Cdc42 GTPases facilitate TNF-alpha-mediated secretion of CCL2 from peripheral nerve microvascular endoneurial endothelial cells. J Peripher Nerv Syst 18(3):199–208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Martin TA, Jiang WG (2009) Loss of tight junction barrier function and its role in cancer metastasis. Biochim Biophys Acta 1788(4):872–891

    Article  CAS  PubMed  Google Scholar 

  61. Marcato P et al (2011) Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells 29(1):32–45

    Article  CAS  PubMed  Google Scholar 

  62. Quintana E et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Engsig MT et al (2000) Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 151(4):879–889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Shuman Moss LA, Jensen-Taubman S, Stetler-Stevenson WG (2012) Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am J Pathol 181(6):1895–1899

    Article  PubMed Central  PubMed  Google Scholar 

  65. Ram M, Sherer Y, Shoenfeld Y (2006) Matrix metalloproteinase-9 and autoimmune diseases. J Clin Immunol 26(4):299–307

    Article  CAS  PubMed  Google Scholar 

  66. Grossetete M et al (2009) Elevation of matrix metalloproteinases 3 and 9 in cerebrospinal fluid and blood in patients with severe traumatic brain injury. Neurosurgery 65(4):702–708

    Article  PubMed Central  PubMed  Google Scholar 

  67. Wong ET et al (2008) Cerebrospinal fluid matrix metalloproteinase-9 increases during treatment of recurrent malignant gliomas. Cerebrospinal Fluid Res 5:1

    Article  PubMed Central  PubMed  Google Scholar 

  68. Kim JG et al (2005) Clinical implications of angiogenic factors in patients with acute or chronic leukemia: hepatocyte growth factor levels have prognostic impact, especially in patients with acute myeloid leukemia. Leuk Lymphoma 46(6):885–891

    Article  PubMed  Google Scholar 

  69. Strazielle N et al (2003) Pro-inflammatory cytokines modulate matrix metalloproteinase secretion and organic anion transport at the blood-cerebrospinal fluid barrier. J Neuropathol Exp Neurol 62(12):1254–1264

    CAS  PubMed  Google Scholar 

  70. Coussens LM et al (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103(3):481–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Burlingame AL, Stults JT (2012) Mass spectrometry: reconnaissance at the Frontiers of biology. Mol Cell Proteomics 11(5):1–2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Gilburd B et al (2004) Autoantibodies profile in the sera of patients with Sjogren’s syndrome: the ANA evaluation–a homogeneous, multiplexed system. Clin Dev Immunol 11(1):53–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Brandsma D et al (2006) CSF protein profiling using multiplex immuno-assay: a potential new diagnostic tool for leptomeningeal metastases. J Neurol 253(9):1177–1184

    Article  CAS  PubMed  Google Scholar 

  74. Franciotta D et al (2006) Cytokines and chemokines in cerebrospinal fluid and serum of adult patients with acute disseminated encephalomyelitis. J Neurol Sci 247(2):202–207

    Article  CAS  PubMed  Google Scholar 

  75. Bruserud O et al (2007) Subclassification of patients with acute myelogenous leukemia based on chemokine responsiveness and constitutive chemokine release by their leukemic cells. Haematologica 92(3):332–341

    Article  CAS  PubMed  Google Scholar 

  76. Li H, et al (2014) A systematic review of matrix metalloproteinase 9 as a biomarker of survival in patients with osteosarcoma. Tumour Biol 35:5487–91

Download references

Acknowledgments

This study was funded by Natural Science Foundation of Guangdong Province, China (S2012030006289, NO9151008901000043), Science and Technology Program of Guangdong Province, China (Nos. 2010B031600321, and 2012B031800217).

Conflict of interest

We declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yang Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, MY., Fan, ZC., Li, Yz. et al. The prognostic significance of serum and cerebrospinal fluid MMP-9, CCL2 and sVCAM-1 in leukemia CNS metastasis. J Neurooncol 122, 229–244 (2015). https://doi.org/10.1007/s11060-014-1707-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1707-8

Keywords

Navigation