Skip to main content

Advertisement

Log in

Spontaneous canine gliomas: overexpression of EGFR, PDGFRα and IGFBP2 demonstrated by tissue microarray immunophenotyping

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Fifty-seven spontaneous canine gliomas were histologically classified and graded using the latest World Health Organization (WHO 2007) criteria for classification of human gliomas. A total of 19 canine astrocytomas were classified as follows: grade IV (GBM) n = 7; grade III n = 5; and grade II, n = 7. Thirty-eight oligodendrogliomas were classified as either grade III (anaplastic) n = 35 or low grade II n = 3. Tissue microarray (TMA) immunohistochemistry was used to evaluate tumor expression of EGFR, PDGFRa and IGFBP2, three key molecules of known pathophysiological importance in human gliomas. Findings were correlated with tumor classification and grade. Increased EGFR expression was demonstrated in 57% of GBMs, 40% of grade III and 28% of grade II astrocytomas. EGFR expression occurred in only 3% of grade III oligodendrogliomas. Increased expression of PDGFRα was demonstrated in 43% of GBMs, 20% of grade III, and 14% of grade II astrocytomas. In the oligodendroglioma series, 94% of grade III tumors overexpressed PDGFRα. IGFBP2 expression was detected in 71, 60 and 28% of GBMs, grade III and grade II astrocytomas respectively. IGFBP2 expression occurred in 48% of anaplastic and in 33% of low grade oligodendrogliomas. Expression of EGFR, PDGFRα or IGFBP2 was not detected in normal canine CNS control TMA cores. The incidence of overexpression of EGFR, PDGFRα and IGFBP2 in these canine gliomas closely parallels that in human tumors of similar type and grade. These findings support a role for the spontaneous canine glioma model in directed pathway-targeting therapeutic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kliehues P, Burger PC, Aldape KD (2007) Glioblastoma. In: Louis DN, Ohgaki H, Wiestler OD, Cavanee WK et al (eds) WHO classification of tumours of the central nervous system. IARC, Lyon, France, pp 33–49

    Google Scholar 

  2. Fleming TP, Saxena A, Clark WC et al (1992) Amplification or overexpression of platelet derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res 52:4550–4553

    CAS  PubMed  Google Scholar 

  3. Haberler C, Gelpi E, Marosi C et al (2006) Immunohistochemical analysis of platelet derived growth factor receptor-α,-β, c-kit, c-abl, and arg proteins in glioblastoma: possible implications for patient selection for imatinib mesylate therapy. J Neurooncol 76:105–109

    Article  CAS  PubMed  Google Scholar 

  4. DiRocco F, Carroll RS, Zhang J, Black PM (1998) Platelet-derived growth factor and its receptor expression in human oligodendrogliomas. Neurosurgery 42:341–346

    Article  CAS  Google Scholar 

  5. Smith JS, Wang XY, Jetal Qian (2000) Amplification of the platelet-derived growth factor receptor-A (PDGFA) gene occurs in oligodendrogliomas with grade IV anaplastic features. J Neuropathol Exp Neurol 59:495–503

    CAS  PubMed  Google Scholar 

  6. Shih AH, Dai C, Hu X et al (2004) Dose-dependent effects of platelet-derived growth factor-B on glial tumorigenesis. Cancer Res 64:4783–4789

    Article  CAS  PubMed  Google Scholar 

  7. Fuller GN, Rhee CH, Hess KR et al (1999) Reactivation of insulin-like growth factor binding protein 2 expression in glioblastoma multiforme: a revelation by parallel gene expression profiling. Cancer Res 59:4228–4232

    CAS  PubMed  Google Scholar 

  8. Zhang W, Wang H, Song SW, Fuller GN (2002) Insulin-like growth factor binding protein 2: gene expression microarrays and the hypothesis-generation paradigm. Brain Pathol 12:87–94

    CAS  PubMed  Google Scholar 

  9. Elmlinger MW, Deininger MH, Schuett BS et al (2001) In vivo expression of insulin-like growth factor-binding protein-2 in human gliomas increases with the tumor grade. Endocrinology 142:1652–1658

    Article  CAS  PubMed  Google Scholar 

  10. McDonald KL, O’Sullivan MG, Parkinson JF et al (2007) IQGAP1 and IGFBP2: valuable biomarkers for determining prognosis in glioma patients. J Neuropathol Exp Neurol 66:405–417

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Wang H, Shen W et al (2003) Insulin-like growth factor binding protein 2 enhances glioblastoma invasion by activating invasion-enhancing genes. Cancer Res 63:4315–4321

    CAS  PubMed  Google Scholar 

  12. Wang GK, Hu L, Fuller GN, Zhang W (2006) An interaction between insulin-like growth factor-binding protein 2 (IFGBP2) and integrin α5 is essential for IGFBP2-induced cell mobility. J Biol Chem 281:14085–14091

    Article  CAS  PubMed  Google Scholar 

  13. Dunlap SM, Celestino J, Wang H et al (2007) Insulin-like growth factor binding protein 2 promotes glioma development and progression. PNAS 104:11736–11741

    Article  CAS  PubMed  Google Scholar 

  14. Priester WA, Mantel N (1971) Occurrence of tumors in domestic animals. Data from 12 United States and Canadian colleges of veterinary medicine. J Natl Cancer Inst 47:1333–1344

    CAS  PubMed  Google Scholar 

  15. Lipsitz D, Higgins RJ, Kortz GD et al (2003) Glioblastoma multiforme: clinical findings, magnetic resonance imaging and pathology in five dogs. Vet Pathol 40:659–669

    Article  CAS  PubMed  Google Scholar 

  16. Stoica G, Kim H-T, Hall DG, Coates JR (2004) Morphology, immunocytochemistry, and genetic alterations in dog astrocytomas. Vet Pathol 41:10–19

    Article  CAS  PubMed  Google Scholar 

  17. Dickinson PJ, Roberts B, Higgins RJ et al (2006) Expression of tyrosine kinase receptors VEGF-1 (FLT-1), VEGFR-2 (KDR), EGFR-1, PDGFRα and c-Met in canine brain tumors. Vet Comp Oncol 4:132–140

    Article  CAS  PubMed  Google Scholar 

  18. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  Google Scholar 

  19. Wang H, Wang H, Zhang W, Fuller GN (2002) Tissue microarrays: applications in neuropathology research, diagnosis and education. Brain Pathol 12:95–107

    Article  PubMed  Google Scholar 

  20. Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kliehues P (1996) Ohaki H overexpression of the EF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6:217–223

    Article  CAS  PubMed  Google Scholar 

  21. Li JY, Wang H, May S, Song X, Fueyo J, Fuller GN, Wang H (2008) Constitutive activation of c-Jun N-terminal kinase correlates with histologic grade and EGFR expression in diffuse gliomas. J Neurooncol 88:11–17

    Article  CAS  PubMed  Google Scholar 

  22. Reifenberger J, Reifenberger G, Ichimura K, Schmidt EE, Wechsler W, Collins VP (1996) Epidermal growth factor receptor expression in oligodendroglial tumors. Am J Pathol 149:29–35

    CAS  PubMed  Google Scholar 

  23. McLendon RE, Wikstrand CJ, Matthews MR, Al-Baradei R, Bigner S, Bigner D (2000) Glioma-associated antigen expression in oligodendroglial neoplasms: tenascin and epidermal growth factor receptor. J Histochem Cytochem 48:1103–1110

    CAS  PubMed  Google Scholar 

  24. Robinson S, Cohen M, Prayson R, Ransohoff RM, Tabrizi N, Miller RH (2001) Constitutive expression of growth-related oncogene and its receptor in oligodendrogliomas. Neurosurgery 48:864–873

    Article  CAS  PubMed  Google Scholar 

  25. Dai C, Lyustikman Y, Shih A et al (2005) The characteristics of astrocytomas and oligodendrogliomas are caused by two distinct and interchangeable signaling formats. Neoplasia 7:397–406

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Higgins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higgins, R.J., Dickinson, P.J., LeCouteur, R.A. et al. Spontaneous canine gliomas: overexpression of EGFR, PDGFRα and IGFBP2 demonstrated by tissue microarray immunophenotyping. J Neurooncol 98, 49–55 (2010). https://doi.org/10.1007/s11060-009-0072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-009-0072-5

Keywords

Navigation