Skip to main content
Log in

Origin and evolution of paramagnetic states in mixtures of ZnO and carbon nanoparticles during intensive mechanical treatment

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, the microstructural evolution and reaction processes in the mixture of ZnO + xC nanoparticles during prolonged high-energy mechanical activation were explored. The formation of paramagnetic centers has been identified. It was observed that the evolution of various paramagnetic defects reveals several macroscopic flow processes that take place in the system. Some of these processes are the destruction of primary durable nanoparticle ZnO aggregates, the crushing of individual nanoparticles (250–14 nm), the development of accumulative thermal processes in the sample, the interaction of carbon atoms with oxygen from the treatment chamber and from the surface of the ZnO nanoparticles, the formation of reducing atmosphere in the grinding chamber, and the occurrence of the forming conditions of the phase transition ZnOW → ZnOS on the surface layers of ZnOW nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abragam A, Bleaney B (2012) Electron paramagnetic resonance of transition ions. Oxford University Press, Oxford

    Google Scholar 

  • Arčon D, Jagličič Z, Zorko A, Rode AV, Christy AG, Madsen NR, Gamaly EG, Luther-Davies B (2006) Origin of magnetic moments in carbon nanofoam. Phys Rev B 74:014438

    Article  Google Scholar 

  • Ashrafi ABMA, Jagadish C (2007) Review of zincblende ZnO: stability of metastable ZnO phases. J Appl Phys 102:071101

    Article  Google Scholar 

  • Ashrafi ABMA, Ueta A, Avramescu A, Kumano H, Suemune I, Ok YW, Seong TY (2000) Growth and characterization of hypothetical zinc-blende ZnO films on GaAs (001) substrates with ZnS buffer layers. Appl Phys Lett 76:550–552

    Article  Google Scholar 

  • Ashrafi ABMA, Suemune I, Kumano H (2002) H2O-vapor-activated ZnO growth on a-face sapphire substrates by metalorganic molecular-beam epitaxy. Jpn J Appl Phys 41:2851–2854

    Article  Google Scholar 

  • Barklie RC (2001) Characterisation of defects in amorphous carbon by electron paramagnetic resonance. Diam Relat Mater 10:174–181

    Article  Google Scholar 

  • Barklie RC, Collins M, Silva SRP (2000) EPR linewidth variation, spin relaxation times, and exchange in amorphous hydrogenated carbon. Phys Rev B 61:3546–3554

    Article  Google Scholar 

  • Beuneu F, l’Huillier C, Salvetat J-P, Bonard J-M, Forro L (1999) Modification of multiwall carbon nanotubes by electron irradiation: an ESR study. Phys Rev B 59:5945–5949

    Article  Google Scholar 

  • Bleaney B, Rubins RS (1961) Explanation of some `Forbidden’ transitions in paramagnetic resonance. Proc Phys Soc 77:103–112

    Article  Google Scholar 

  • Chen Z, Zhang N, Xu Y-J (2013) Synthesis of graphene–ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion. Cryst Eng Comm 15:3022–3030

    Article  Google Scholar 

  • Fan Z, Lu JG (2005) Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol 5:1561–1573

    Article  Google Scholar 

  • Galland D, Herve A (1974) Temperature dependence of the ESR spectrum of the zinc vacancy in ZnO. Sol St Commun 14:953–956

    Article  Google Scholar 

  • Geisler CH, Simmons GL (1964) High temperature induced EPR signals in zinc oxide. Phys Lett 11:111–112

    Article  Google Scholar 

  • Gogotsi Y, Presser V (2014) Carbon nanomaterials. Taylor & Francis, Boca Raton

    Google Scholar 

  • Gurwitz R, Cohen R, Shalish I (2014) Interaction of light with the ZnO surface: photon induced oxygen “breathing”, oxygen vacancies, persistent photoconductivity, and persistent photovoltage. J Appl Phys 115:033701

    Article  Google Scholar 

  • Halliburton LE, Giles NC, Garces NY, Luo M, Xu C, Bai L, Boatner LA (2005) Production of native donors in ZnO by annealing at high temperature in Zn vapor. Appl Phys Lett 87:172108

    Article  Google Scholar 

  • Hoffmann K, Hahn D (1974) Electron spin resonance of lattice defects in zinc oxide. Phys Status Solidi A 24:637–648

    Article  Google Scholar 

  • Hsu HS, Tung Y, Chen YJ, Chen MG, Lee JS, Sun SJ (2011) Defect engineering of room-temperature ferromagnetism of carbon-doped ZnO. Phys Status Solidi (RRL) 5:447–449

    Article  Google Scholar 

  • Hu Y, Chen H-J (2007) Origin of green luminescence of ZnO powders reacted with carbon black. J Appl Phys 101:124902

    Article  Google Scholar 

  • Ischenko V, Polarz S, Grote D, Stavarache V, Fink K, Driess M (2005) Zinc oxide nanoparticles with defects. Adv Funct Mater 15:1945–1954

    Article  Google Scholar 

  • Kaftelen H, Ocakoglu K, Thomann R, Tu S, Weber S, Erdem E (2012) EPR and photoluminescence spectroscopy studies on the defect structure of ZnO nanocrystals. Phys Rev B 86:014113

    Article  Google Scholar 

  • Kakazey MG, Kakazei GN, Gonzalez-Rodriguez JG (2001) Mechanothermal effects on the defect structure in ZnO powders subjected to hydrostatic pressure. Cryst Res Technol 36:429–439

    Article  Google Scholar 

  • Kakazey MG, Vlasova M, Dominguez-Patiño M, Dominguez-Patiño G, Gonzalez-Rodriguez G, Salazar-Hernandez B (2002) Hyper-rapid thermal defect annealing during grinding of ZnO powders. J Appl Phys 92:5566–5568

    Article  Google Scholar 

  • Kakazey M, Vlasova M, Dominguez-Patiño M, Munguia-Diaz J (2008) Formation of a solid solution of ZnO: Mn2+ during mechanical treatment of oxides mixture. Sol St Commun 145:122–125

    Article  Google Scholar 

  • Katumba G, Olumekor L, Forbes A, Makiwa G, Mwakikunga B (2008) Optical, thermal and structural characteristics of carbon nanoparticles embedded in ZnO and NiO as selective solar absorbers. Sol Energy Mater Sol Cells 92:1285–1292

    Article  Google Scholar 

  • Kliava J (1988) EPR spectroscopy of disordered solids. Zinatne, Riga

    Google Scholar 

  • Kunii S, Tobita S, Yirahara E (1966) Intensities and doublet separations of forbidden transitions in the paramagnetic resonance of Mn++ in the II–VI compounds. J Phys Soc Jpn 21:479–484

    Article  Google Scholar 

  • Lee GH, Kawazoe T, Ohtsu M (2005) Room temperature near-field photoluminescence of zinc-blend and wurtzite ZnO structures. Appl Surf Sci 239:394–397

    Article  Google Scholar 

  • Nistor SV, Nistor LC, Stefan M, Ghica D, Aldica Gh, Barascu JN (2011) Crystallization of disordered nanosized ZnO formed by thermal decomposition of nanocrystalline hydrozincite. Cryst Growth Des 11:5030–5038

    Article  Google Scholar 

  • Norberg NS, Kittilstved KR, Amonette JE, Kukkadapu RK, Schwartz DA, Gamelin DR (2004) Synthesis of colloidal Mn2+: ZnO quantum dots and high-Tc ferromagnetic nanocrystalline thin films. J Am Chem Soc 126:9387–9398

    Article  Google Scholar 

  • Özgür Ü, YaI Alivov, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho S-J, Morkoç H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301

    Article  Google Scholar 

  • Palotas AB, Rainey LC, Felderman CJ, Vander Sande JB (1996) Soot morphology: an application of image analysis in high-resolution transmission electron microscopy. Microsc Res Tech 33:266–278

    Article  Google Scholar 

  • Pan N, Xue H, Yu M, Cui X, Wang X, Hou JG, Huang J (2010) Tip-morphology-dependent field emission from ZnO nanorod arrays. Nanotechnology 21:225707

    Article  Google Scholar 

  • Romeiro FC, Marinho JZ, Silva AC, Cano NF, Dantas NO, Lima RC (2013) Photoluminescence and magnetism in Mn2+-doped ZnO nanostructures grown rapidly by the microwave hydrothermal method. J Phys Chem C 117:26222

    Article  Google Scholar 

  • Schallenberger B, Hausmann A (1976) Eigenstörstellen in elektronenbestrahltem Zinkoxid. Z Phys B 23:177–181

    Article  Google Scholar 

  • Toloman D, Mesaros A, Popa A, Raita O, Silipas TD, Vasile BS, Pana O, Giurgiu LM (2013) Evidence by EPR of ferromagnetic phase in Mn-doped ZnO nanoparticles annealed at different temperatures. J Alloys Compd 551:502–507

    Article  Google Scholar 

  • van Bueren HG (1961) Imperfections in crystals, 2nd edn. North-Holland Pub. Co., Amsterdam

    Google Scholar 

  • Vanheusden K, Seager CH, Warren WL, Trallant DR, Caruso J, Hampden-Smith MJ, Kodas TT (1997) Green photoluminescence efficiency and free-carrier density in ZnO phosphor powders prepared by spray pyrolysis. J Lumin 75:11–16

    Article  Google Scholar 

  • Vlasenko LS (2010) Magnetic resonance studies of intrinsic defects in ZnO: oxygen vacancy. Appl Magn Reson 39:103–111

    Article  Google Scholar 

  • Xu L, Su Y, Chen Y, Xiao H, Zhu LA, Zhou Q, Li S (2006) Synthesis and characterization of indium-doped ZnO nanowires with periodical single-twin structures. J Phys Chem B 110:6637–6642

    Article  Google Scholar 

  • Yoo YZ, Osaka Y, Fukumura T, Kawaski M, Koinuma H, Chikyow T, Ahmet P, Setoguchi A, Chichibu SF (2001) High temperature growth of ZnS films on bare Si and transformation of ZnS to ZnO by thermal oxidation. Appl Phys Lett 78:616–618

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykola Kakazey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakazey, M., Vlasova, M. & Juarez-Arellano, E.A. Origin and evolution of paramagnetic states in mixtures of ZnO and carbon nanoparticles during intensive mechanical treatment. J Nanopart Res 17, 118 (2015). https://doi.org/10.1007/s11051-015-2931-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2931-7

Keywords

Navigation