Skip to main content
Log in

The formation of titanium dioxide crystallite nanoparticles during activation of PAN nanofibers containing titanium isopropoxide

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Activated carbon (AC) can act as an important carrier for TiO2 nanoparticles. TiO2 nanoparticle can be fabricated by the hydrolysis and condensation of titanium alkoxides like titanium isopropoxide. This study showed that the formation of titanium dioxide crystallite nanoparticle during activation of PAN nanofibers containing titanium isopropoxide leads to the formation of mainly anatase crystal TiO2 nanoparticle in AC nanofibers, with a good dispersion in both the longitude and cross section of nanofibers. The TiO2 crystallite size lies in the range of 7.3–11.3 nm. The dispersion of TiO2 nanoparticles in the matrix of AC nanofibers is far superior to the direct mixing of TiO2 nanoparticles in the original electrospinning solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alivov Y, Fan ZY (2009) A TiO2 nanostructure transformation: from ordered nanotubes to nanoparticles. Nanotechnology 20:405610–405616

    Article  Google Scholar 

  • Barka N, Qourzal S, Assabbane A, Ait-Ichou Y (2010) Kinetic modeling of the photocatalytic degradation of methyl orange by supported TiO2. Environ Sci Eng 4:1–5

    CAS  Google Scholar 

  • Bischoff B, Anderson MA (1995) Peptization properties in the sol–gel preparation of porous anatase (TiO2). Mater Sci 7(10):1772–1778

    CAS  Google Scholar 

  • Boschaloo J, Goossens A, Schoonman J (1997) Photoelectrochemical study of thin anatase TiO2 films prepared by metallorganic chemical vapor deposition. Electrochem Soc 144:1311–1317

    Article  Google Scholar 

  • Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177

    Article  CAS  Google Scholar 

  • Carrott P, Nabais JMV, Carrott MMLR, Pajares JA (2001) Preparation of activated carbon fibres from acrylic textile fibres. Carbon 39:1543–1555

    Article  CAS  Google Scholar 

  • Chu D, Yuan X, Qin G, Xu M, Zheng P, Lu J, Zha L (2008) Efficient carbon-doped nanostructured TiO2 (anatase) film for photoelectrochemical solar cells. Nanoparticle Res 10:357–363

    Article  CAS  Google Scholar 

  • Defarials R, Guedesesilva CC, Restivo TAG (2005) Thermal study of the anatase–rutile structural transitions in sol–gel synthesized titanium dioxide powders. J Serbian Chem Soc 70(4):675–679

    Article  Google Scholar 

  • Górska P, Zaleska A, Suska A, Hupka J (2009) Photocatalytic activity and surface properties of carbon-doped titanium dioxide. Physicochem Probl Miner Process 43:21–30

    Google Scholar 

  • Hashimoto K, Irie H, Fujishima A (2007) TiO2 photocatalysis: a historical overview and future prospects. AAPPS Bull 17:12–28

    Google Scholar 

  • He J, Wan YQ, Yu JY (2008) Effect of concentration on electrospun polyacrylonitrile (PAN) nanofibers. Fiber Polym 9(2):140–142

    Article  CAS  Google Scholar 

  • Hench L, West JK (1990) The sol-gel process. Chem Rev 90(1):33–72

    Article  CAS  Google Scholar 

  • Hong Y, Li D, Zheng J, Zou G (2006) Sol–gel growth of titania from electrospun polyacrylonitrile nanofibres. Nanotechnology 17:1986–1993

    Article  CAS  Google Scholar 

  • Hu Y, Tsai HL, Huang CL (2003) Effect of brookite phase on the anatase–rutile transition in titania nanoparticles. Eur Ceram Soc 23:691–696

    Article  CAS  Google Scholar 

  • Im J, Kim MI, Lee YS (2008) Preparation of PAN-based electrospun nanofiber webs containing TiO2 for photocatalytic degradation. Mater Lett 62:3652–3655

    Article  CAS  Google Scholar 

  • Jeun J, Park DW, Seo DK, Kim HB, Nho YC, Kang PH (2011) Enhancement of photocatalytic activity of PAN-based nanofibers containing sol–gel-derived TiO2 nanoparticles by E-beam irradiation. Rev Adv Mater Sci 28:26–30

    CAS  Google Scholar 

  • Kedem S, Schmidt J, Paz Y, Cohen Y (2005) Composite polymer nanofibers with carbon nanotubes and titanium dioxide particles. Langmuir 21:5600–5604

    Article  CAS  Google Scholar 

  • Mahshid S, Askari M, Sasani Ghamsari M (2007) Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Mater Process Technol 189:296–300

    Article  CAS  Google Scholar 

  • Masuda Y, Kato K (2009) Synthesis and phase transformation of TiO2 nano-crystals in aqueous solutions. Ceram Soc Jpn 117:373–376

    Article  CAS  Google Scholar 

  • Matos J, Laine J, Herrmann JM (1999) Association of activated carbons of different origins with titania in the photocatalytic purification of water. Carbon 37:1871872

    Google Scholar 

  • Mills A, Lee SK (2002) A web-based overview of semiconductor photochemistry-based current commercial applications. Photochem Photobiol A 152:233–247

    Article  CAS  Google Scholar 

  • Peng WYM, Han L, Ahmed S (2011) Controlled fabrication of TiO2 rutile nanorod/anatase nanoparticle composite photoanodes for dye-sensitized solar cell application. Nanotechnology 22:275709–275714

    Article  Google Scholar 

  • Puma G, Bono A, Krishnaiah D, Collin JG (2008) Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: a review paper. Hazard Mater 157:209–219

    Article  Google Scholar 

  • Sirisaksoontorn W, Thachepan S, Songsasen A (2009) Photodegradation of phenanthrene by N-doped TiO2 photocatalyst. J Environ Sci Health A 44:841–847

    CAS  Google Scholar 

  • Sobczyński A, Dobosz A (2001) Water purification by photocatalysis on semiconductors. Environ Stud 10:195–205

    Google Scholar 

  • Stallings W, Lamb HH (2003) Synthesis of nanostructured titania powders via hydrolysis of titanium Isopropoxide in supercritical carbon dioxide. Langmuir 19:2989–2994

    Article  CAS  Google Scholar 

  • Tan Y, Wong CL, Mohamed AR (2011) An overview on the photocatalytic activity of nano-doped-TiO2 in the degradation of organic pollutants. ISRN Mater Sci 2011:1–18

    Article  Google Scholar 

  • Tao Y, Wu CY, Mazyck DW (2006) Microwave-assisted preparation of TiO2/activated carbon composite photocatalyst for removal of methanol in humid air streams. Ind Eng Chem Res 45:5110–5116

    Article  CAS  Google Scholar 

  • Tatsuda N, Itahara H, Setoyama N, Fukushima Y (2005) Preparation of titanium dioxide/activated carbon composites using supercritical carbon dioxide. Carbon 43:2358–2365

    Article  CAS  Google Scholar 

  • Thamaphat K, Limsuwan P, Ngotawornchai B (2008) Phase characterization of TiO2 powder by XRD and TEM. Kasetsart 42:357–361

    Google Scholar 

  • Tryba B, Morawski AW, Inagaki M (2003) A new route for preparation of TiO2-mounted activated carbon. Appl Catal B 46:203–208

    Article  CAS  Google Scholar 

  • Wang T, Kumar S (2006) Electrospinning of polyacrylonitrile nanofibers. Appl Polym Sci 102(2):1023–1029

    Article  CAS  Google Scholar 

  • Wang J, Zhou Y, Hu Y, O’Hayre R, Shao Z (2011) Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries. Phys Chem C 115:2529–2536

    Article  CAS  Google Scholar 

  • Wu J, Lo S, Song K, Vijayan BK, Li W, Gray KA, Dravid VP (2011) Growth of rutile TiO2 nanorods on anatase TiO2 thin films on Si-based substrates. Mater Res 26:1646–1652

    Article  CAS  Google Scholar 

  • Yang H, Liu LF, Yang FL, Yu JC (2008) Fibrous TiO2 prepared by chemical vapor deposition using activated carbon fibers as template via adsorption, hydrolysis and calcinations. Zhejiang Univ Sci A 9:981–987

    Article  CAS  Google Scholar 

  • Yuan R, Guan R, Shen W, Zheng J (2005a) Photocatalytic degradation of methylene blue by a combination of TiO2 and activated carbon fibers. Colloid Interface Sci 282:87–91

    Article  CAS  Google Scholar 

  • Yuan R, Zheng J, Guan R, Zhao Y (2005b) Surface characteristics and photocatalytic activity of TiO2 loaded on activated carbon fibers. Colloids Surf A 254:131–136

    Article  CAS  Google Scholar 

  • Zhang H, Banfield JF (2002) Kinetics of crystallization and crystal growth of nanocrystalline anatase in nanometer-sized amorphous titania. Chem Mater 14:4145–4154

    Article  CAS  Google Scholar 

  • Zhang W, Wang YZ, Sun CF (2007) Characterization on oxidative stabilization of polyacrylonitrile nanofibers prepared by electrospinning. Polym Res 14:467–474

    Article  CAS  Google Scholar 

  • Zhang J, Maurer FHJ, Yang M (2011) In situ formation of TiO2 in electrospun poly(methyl methacrylate) nanohybrids. Phys Chem 115:10431–10441

    CAS  Google Scholar 

  • Zhao J, Duan H, Ma Z, Liu L, Xie E (2008) Effect of temperature on the photoluminescence of Eu3+ doped TiO2 nanofibers prepared by electrospinning. J Optoelectron Adv Mater 10:3029–3032

    CAS  Google Scholar 

  • Zhao X, Jin W, Cai J, Ye J, Li Z, Ma Y, Xie J, Qi L (2011) Shape and Size-controlled synthesis of uniform anatase TiO2 nanocuboids enclosed by active 100 and 001 facets. Adv Funct Mater 21:3554–3563

    Article  CAS  Google Scholar 

  • Zhu P, Hong Y, Liu B, Zou G (2009) The synthesis of titanium carbide-reinforced carbon nanofibers. Nanotechnology 20:1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Tavanai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehrpouya, F., Tavanai, H., Morshed, M. et al. The formation of titanium dioxide crystallite nanoparticles during activation of PAN nanofibers containing titanium isopropoxide. J Nanopart Res 14, 1074 (2012). https://doi.org/10.1007/s11051-012-1074-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1074-3

Keywords

Navigation