Skip to main content
Log in

Influence of synthesis method on structural and magnetic properties of cobalt ferrite nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The Co–ferrite nanoparticles having a relatively uniform size distribution around 8 nm were synthesized by three different methods. A simple co-precipitation from aqueous solutions and a co-precipitation in an environment of microemulsions are low temperature methods (50 °C), whereas a thermal decomposition of organo-metallic complexes was performed at elevated temperature of 290 °C. The X-ray diffractometry (XRD) showed spinel structure, and the high-resolution transmission electron microscopy (HRTEM) a good crystallinity of all the nanoparticles. Energy-dispersive X-ray spectroscopy (EDS) showed the composition close to stoichiometric (~CoFe2O4) for both co-precipitated nanoparticles, whereas the nanoparticles prepared by the thermal decomposition were Co-deficient (~Co0.6Fe2.4O4). The X-ray absorption near-edge structure (XANES) analysis showed Co valence of 2+ in all the samples, Fe valence 3+ in both co-precipitated samples, but average Fe valence of 2.7+ in the sample synthesized by thermal decomposition. The variations in cation distribution within the spinel lattice were observed by structural refinement of X-ray absorption fine structure (EXAFS). Like the bulk CoFe2O4, the nanoparticles synthesized at elevated temperature using thermal decomposition displayed inverse spinel structure with the Co ions occupying predominantly octahedral lattice sites, whereas co-precipitated samples showed considerable proportion of cobalt ions occupying tetrahedral sites (nearly 1/3 for the nanoparticles synthesized by co-precipitation from aqueous solutions and almost 1/4 for the nanoparticles synthesized in microemulsions). Magnetic measurements performed at room temperature and at 10 K were in good agreement with the nanoparticles’ composition and the cation distribution in their structure. The presented study clearly shows that the distribution of the cations within the spinel lattice of the ferrite nanoparticles, and consequently their magnetic properties are strongly affected by the synthesis method used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ammar S, Jouini N, Fievet F, Stephan O, Marhic C, Richard M, Villain F, Chartier dit Moulin C, Brice S, Sainctavit P (2004) Influence of the synthesis parameters on the cation distribution of ZnFe2O4 nanoparticles obtained by forced hydrolysis in polyol medium. J Non-Cryst Solids 345&346:658–662

    Article  CAS  Google Scholar 

  • Arčon I, Kolar J, Kodre A, Hanžel D, Strlič M (2007) XANES analysis of Fe valence in iron gall inks. X-ray spectrom 36:199–205

    Article  Google Scholar 

  • Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2:22–32

    Article  Google Scholar 

  • Batlle X, Labarta A (2002) Finite-size effect in fine particles: magnetic and transport properties. J Phys D 35:R15–R42

    Article  CAS  ADS  Google Scholar 

  • Calvin S, Carpenter EE, Ravel B, Harris VG, Morrison SA (2002) Multiedge refinement of extended X-ray absorption fine structure of manganese zinc ferrite nanoparticles. Phys Rev B66:224405-1–224405-13

    Google Scholar 

  • Carpenter EE, O’Connor CJ, Harris VG (1999) Atomic structure and magnetic properties of MnFe2O4 nanoparticles produced by reverse micelle synthesis. J Appl Phys 85:5175–5177

    Article  CAS  ADS  Google Scholar 

  • Cullity BD (1987) Elements of X-ray diffraction. Addison-Wesley, Reading

    Google Scholar 

  • Elster A, Burdette J (2001) Questions and answers in magnetic resonance imaging. Mosby, St. Louis

    Google Scholar 

  • Fontjin WFJ, van der Zaag PJ, Feiner LF, Metselaar R, Devillers MAC (1999) A consistent interpretation of the magneto-optical spectra of spinel type ferrites (invited). J Appl Phys 85:5100–5105

    Article  ADS  Google Scholar 

  • Franco A, Zapf V (2008) Temperature dependence of magnetic anisotropy in nanoparticles of Co x Fe(3-x)O4. J Magn Magn Mater 320:709–713

    Article  CAS  ADS  Google Scholar 

  • Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606

    Article  CAS  PubMed  Google Scholar 

  • Häfeli U, Schüt W, Teller J, Zborowski M (1997) Scientific and clinical applications of magnetic carriers. Plenum, New York

    Google Scholar 

  • Hamdeh HH, Ho JC, Oliver SA, Willey RJ, Oliveri G, Busca GJ (1997) Magnetic properties of partially-inverted zinc ferrite aerogel powders. J Appl Phys 81:1851–1857

    Article  CAS  ADS  Google Scholar 

  • Jeyadevan B, Tohji T, Nakatsuka KJ (1994) Structure-analysis of coprecipitated ZnFe2O4 by extended X-ray absorption fine-structure. Appl Phys 76:6325–6327

    Article  CAS  Google Scholar 

  • Kamiyama T, Haneda K, Sato T, Ikeda S, Asano H (1992) Cation distribution in ZnFe2O4 fine particles studied by neutron powder diffraction. Solid State Commun 81:563–566

    Article  CAS  ADS  Google Scholar 

  • Kodama RH (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372

    Article  CAS  ADS  Google Scholar 

  • Li S, John VT, O’Connor, Harris VG, Carpenter E (2000) Cobalt ferrite nanoparticles: Structure, cation distributions and magnetic properties. J Appl Phys 87:6223–6225

    Article  CAS  ADS  Google Scholar 

  • Makovec D, Drofenik M (2008) Non-stoichiometric zinc–ferrite spinel nanoparticles. J Nanopart Res 10:131–141

    Article  CAS  Google Scholar 

  • Makovec D, Košak A, Drofenik M (2004) The preparation of MnZn–ferrite nanoparticles in water-CTAB-hexanol microemulsions. Nanotechnology 15:S160–S166

    Article  CAS  ADS  Google Scholar 

  • Makovec D, Kodre A, Arčon I, Drofenik M (2009) Structure of manganese zinc ferrite spinel nanoparticles prepared with co-precipitation in reversed microemulsions. J Nanopart Res 11:1145–1158

    Article  CAS  Google Scholar 

  • Morrison SA, Cahill CL, Carpenter EE, Calvin S, Swaminathan R, McHenry ME, Harris VG (2004) Magnetic and structural properties of nickel zinc ferrite nanoparticles synthesized at room temperature. J Appl Phys 95:6392–6395

    Article  CAS  ADS  Google Scholar 

  • Mosbach K, Schröder U (1979) Preparation and application of magnetic polymers for targeting of drugs. FEBS Lett 102:112–116

    Article  CAS  PubMed  Google Scholar 

  • Pankhurst QA, Conolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:R167–R181

    Article  CAS  ADS  Google Scholar 

  • Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale synthesis of monodispersed nanocrystals. Nature Mater 3:891–895

    Article  CAS  ADS  Google Scholar 

  • Pelton AD, Schmalzried H, Sticher J (1979) Thermodynamics of Mn3O4–Co3O4, Fe3O4–Mn3O4, and Fe3O4–Co3O4 spinels by phase-diagram analysis. Ber Bunsen-Ges Phys Chem 83:241–252

    CAS  Google Scholar 

  • Pileni MP (1993) Reverse miceles as microreactors. J Phys Chem 97:6961–6973

    Article  CAS  Google Scholar 

  • Ravel B, Newville M (2005) ATENA, ARTHEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541

    Article  CAS  PubMed  Google Scholar 

  • Rosenweig R (1932) Ferrohydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Salazar-Alvarez G, Olsson RT, Sort J, Macedo AA, Ardisson JD, Baró MD, Gedde UW, Nogués J (2007) Enhanced coercivity in Co-rich near-stoichiometric Co x Fe3-x O4+δ nanoparticles prepared in large batches. Chem Mater 19:4957–4963

    Article  CAS  Google Scholar 

  • Sato T, Haneda K, Seki M, Iijima T (1990) Morphology and magnetic properties of ultrafine ZnFe2O4 particles. Appl Phys A50:13–16

    CAS  ADS  Google Scholar 

  • Senyei A, Widder K, Czerlinski C (1978) Magnetic guidance of drug-carrying microspheres. J Appl Phys 49:3578–3583

    Article  CAS  ADS  Google Scholar 

  • Sivakumar N, Narayanasamy A, Shinoda K, Chinnasamy CN, Jeyadevan B, Greneche JM (2007) Electrical and magnetic properties of chemically derived nanocrystalline cobalt ferrite. J Appl Phys 102:013916 1-8

    Google Scholar 

  • Smit J, Wijn HPJ (1959) Ferrites. Philips’ Technical Library, Eindhoven, The Netherlands

    Google Scholar 

  • Sugimoto T (2001) Monodispersed particles. Elsevier science, Amsterdam

    Google Scholar 

  • Sun S, Zeng H, Robinson DB, Raux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126:273–279

    Article  CAS  PubMed  Google Scholar 

  • Tirosh E, Shemer G, Markovich G (2006) Optimizing cobalt ferrite nanocrystal synthesis using a magneto-optical probe. Chem Mater 18:465–470

    Article  CAS  Google Scholar 

  • Veverka M, Veverka P, Kaman O, Lancok A, Zaveta K, Pollert E, Knizek K, Bohacek J, Benes M, Kaspar P, Duguet E, Vasseur S (2007) Magnetic heating by cobalt ferrite nanoparticles. Nanotechnology 18:345704 1-7

    Google Scholar 

  • Widder KJ, Senyei AE, Scrapelli DG (1978) Magnetic microspheres: a model system for site specific drug delivery in vivo. Proc Soc Bio Exp Biol Med 58:141–146

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovenian Research Agency, the Ministry of Higher Education, Science and Technology of the Republic of Slovenia within the National Research Program, and by DESY and the European Community under Contract RII3-CT-2004-506008 (IA-SFS). Provision of synchrotron radiation facilities by HASYLAB is acknowledged. The authors would also like to thank Daša Lesjak for help with the synthesis of the nanoparticles, E. Welter of HASYLAB for expert advice on beamline operation and Paul McGuiness for performing VSM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sašo Gyergyek.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyergyek, S., Makovec, D., Kodre, A. et al. Influence of synthesis method on structural and magnetic properties of cobalt ferrite nanoparticles. J Nanopart Res 12, 1263–1273 (2010). https://doi.org/10.1007/s11051-009-9833-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9833-5

Keywords

Navigation