Skip to main content
Log in

A novel fluid–wall heat transfer model for molecular dynamics simulations

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The ‘fluid–wall thermal equilibrium model’, to numerically simulate heating/cooling of fluid atoms by wall atoms, is used to compare molecular dynamics simulation results to the analytical solution of 1-D heat equation. Liquid argon atoms are placed between two platinum walls and simultaneous heating and cooling is simulated at the walls. Temperature gradient in liquid argon is evaluated and the results are found to match well with the analytical solution showing the physical soundness of the proposed model. Additional simulations are done where liquid argon atoms are heated by both the walls for two different channel heights and it is shown that in such cases, heat transfer occurs at a faster rate than predicted by heat equation with decreasing channel heights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abraham FF (1978) The interfacial density profile of a lennard-jones fluid in contact with a (100) Lennard-Jones wall and its relationship to idealized fluid/wall systems: a Monte Carlo simulation. J Chem Phys 68:3713–3716

    Article  CAS  ADS  Google Scholar 

  • Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Drazer G, Khusid B, Koplik J, Acrivos A (2005) Wetting and particle adsorption in nanoflows. Phys Fluids 17:017102

    Article  ADS  Google Scholar 

  • Koplik J, Banavar JR, Willemsen JF (1989) Molecular dynamics of fluid flow at solid surfaces. Phys Fluids A 1:781–794

    Article  CAS  ADS  Google Scholar 

  • Markvoort AJ, Hilbers PAJ, Nedea SV (2005) Molecular dynamics study of the influence of wall-gas interactions on heat flow in nanochannels. Phys Rev E 71:066702

    Article  CAS  ADS  Google Scholar 

  • Maroo SC, Chung JN (2008) Molecular dynamic simulation of platinum heater and associated nano-scale liquid argon film evaporation and colloidal adsorption characteristics. J Colloid Interface Sci 328:134–146

    Article  CAS  PubMed  Google Scholar 

  • Maruyama S, Kimura T (1999) A study on thermal resistance over a solid–liquid interface by the molecular dynamics method. Therm Sci Eng 7:63–68

    CAS  Google Scholar 

  • Nagayama G, Cheng P (2004) Effects of interface wettability on microscale flow by molecular dynamics simulation. Int J Heat Mass Transf 47:501–513

    Article  MATH  CAS  Google Scholar 

  • Ohara T, Suzuki D (2000) Intermolecular energy transfer at a solid–liquid interface. Nanoscale Microscale Thermophys Eng 4:189–196

    CAS  Google Scholar 

  • Priezjev NV (2007) Rate-dependent slip boundary conditions for simple fluids. Phys Rev E 75:051605

    Article  ADS  Google Scholar 

  • Rapaport DC (1995) The art of molecular dynamics simulation. Cambridge University Press, New York

    Google Scholar 

  • Sadus RJ (1999) Molecular simulation of fluids. Elsevier Science, Amsterdam

    Google Scholar 

  • Spijker P, ten Eikelder HMM, Markvoort AJ, Nedea SV, Hilbers PAJ (2008) Implicit particle wall boundary condition in molecular dynamics. Proc Inst Mech Eng C J Mech Eng Sci 222:855–864

    Google Scholar 

  • Stoddard SD, Ford J (1973) Numerical experiments on the stochastic behavior of a Lennard-Jones gas system. Phys Rev A 8:1504–1512

    Article  CAS  ADS  Google Scholar 

  • Thompson PA, Troian SM (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389:360–362

    Article  CAS  ADS  Google Scholar 

  • Voronov RS, Papavassiliou DV, Lee LL (2006) Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length. J Chem Phys 124:204701

    Article  PubMed  ADS  Google Scholar 

  • Wemhoff AP, Carey VP (2005) Molecular dynamics exploration of thin liquid films on solid surfaces. 1. Monatomic fluid films. Nanoscale Microscale Thermophys Eng 9:331–349

    CAS  Google Scholar 

  • Xu J, Li Y (2007) Boundary conditions at the solid–liquid surface over the multiscale channel size from nanometer to micron. Int J Heat Mass Transf 50:2571–2581

    Article  MATH  CAS  Google Scholar 

  • Xu JL, Zhou ZQ (2004) Molecular dynamics simulation of liquid argon flow at platinum surfaces. J Heat Mass Transf 40:859–869

    Article  CAS  MathSciNet  ADS  Google Scholar 

  • Yang S (2006) Effects of surface roughness and interface wettability on nanoscale flow in a nanochannel. Microfluid Nanofluid 2:501–511

    Article  CAS  Google Scholar 

  • Yi P, Poulikakos D, Walther J, Yadigaroglu G (2002) Molecular dynamics simulation of vaporization of an ultra-thin liquid argon layer on a surface. Int J Heat Mass Transf 45:2087–2100

    Article  MATH  CAS  Google Scholar 

  • Ziarani AS, Mohamad AA (2008) Effect of wall roughness on the slip of fluid in a microchannel. Nanoscale Microscale Thermophys Eng 12:154–169

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalabh C. Maroo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maroo, S.C., Chung, J.N. A novel fluid–wall heat transfer model for molecular dynamics simulations. J Nanopart Res 12, 1913–1924 (2010). https://doi.org/10.1007/s11051-009-9755-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9755-2

Keywords

Navigation