Skip to main content
Log in

Virulence Attributes and Antifungal Susceptibility Profile of Opportunistic Fungi Isolated from Ophthalmic Infections

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Investigations of both virulence factors and antifungal susceptibility profiles are crucial for understanding the pathogenesis and prognosis of ophthalmic mycoses. In this study, we investigated the in vitro antifungal susceptibility of amphotericin B (AMB), voriconazole (VRC), and natamycin (NAT) against a set of 50 fungal isolates obtained from patients with ocular mycoses using the Clinical and Laboratory Standards Institute broth microdilution method. In addition, putative virulence factor, such as secretory phospholipases and proteinases, and biofilm formation activity were analyzed. The geometric means (GMs) of the minimum inhibitory concentrations (MICs) of the antifungals across all isolates were the following (in increasing order): VRC (0.70 μg/mL), AMB (0.81 μg/mL), and NAT (1.05 μg/mL). The highest activity against 14 Aspergillus strains was exhibited by VRC (GM MIC: 0.10 μg/mL), followed by AMB and NAT (GM MICs: 0.21 and 0.27 μg/mL), respectively. However, for 12 Fusarium spp., the GM MIC of VRC (2.66) was higher than those of NAT and AMB (GM MICs 1.3 and 0.8 μg/mL, respectively). Proteinase and phospholipase activity were observed in 30 % and 42 % of the isolates, respectively, whereas only 8 % of the isolates were able to produce biofilms. Phospholipase activity was observed in all Fusarium isolates, but not in any of the Aspergillus isolates. In contrast, biofilm-forming capability was detected in 25 % of the Fusarium isolates, but none of the Aspergillus isolates. The differences in the MICs of AMB, VRC, and NAT, biofilm-forming ability and proteinase and phospholipase activities among the isolates were not significant (p > 0.05). Overall, our study suggests no significant correlation between the antifungal susceptibility profiles and virulence attributes of ocular fungal isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marangon FB, Miller D, Giaconi JA, Alfonso EC. In vitro investigation of voriconazole susceptibility for keratitis and endophthalmitis fungal pathogens. Am J Ophthalmol. 2004;137:820–5.

    Article  CAS  PubMed  Google Scholar 

  2. Chiam N, Rose LV, Waters KD, Elder JE. Scedosporium prolificans endogenous endophthalmitis. J AAPOS. 2013;17:627–9.

    Article  PubMed  Google Scholar 

  3. Pathengay A, Miller DM, Flynn HW Jr, Dubovy SR. Curvularia endophthalmitis following open globe injuries. Arch Ophthalmol. 2012;130:652–4.

    Article  PubMed  Google Scholar 

  4. Mythili A, Babu Singh YR, Priya R, Shafeeq Hassan A, Manikandan P, Panneerselvam K, et al. In vitro and comparative study on the extracellular enzyme activity of molds isolated from keratomycosis and soil. Int J Ophthalmol. 2014;7:778–84.

    PubMed  PubMed Central  Google Scholar 

  5. Thomas PA. Current perspectives on ophthalmic mycoses. Clin Microbiol Rev. 2003;16:730–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Srinivasan M. Fungal keratitis. Curr Opin Ophthalmol. 2004;15:321–7.

    Article  CAS  PubMed  Google Scholar 

  7. Thomas PA, Kaliamurthy J. Mycotic keratitis: epidemiology, diagnosis and management. Clin Microbiol Infect. 2013;19:210–20.

    Article  CAS  PubMed  Google Scholar 

  8. Qiu S, Zhao GQ, Lin J, Wang X, Hu L-T, Du ZD, et al. Natamycin in the treatment of fungal keratitis: a systematic review and meta-analysis. Int J Ophthalmol. 2015;8:597–602.

    PubMed  PubMed Central  Google Scholar 

  9. Arora R, Gupta D, Goyal J, Kaur R. Voriconazole versus natamycin as primary treatment in fungal corneal ulcers. Clin Exp Ophthalmol. 2011;39:434–40.

    Article  PubMed  Google Scholar 

  10. Ramakrishnan T, Constantinou M, Jhanji V, Vajpayee RB. Factors affecting treatment outcomes with voriconazole in cases with fungal keratitis. Cornea. 2013;32:445–9.

    Article  PubMed  Google Scholar 

  11. Nayak N, Satpathy G, Prasad S, Vajpayee RB, Pandey RM. Correlation of proteinase production with amphotericin B resistance in fungi from mycotic keratitis. Ophthalmic Res. 2010;44:113–8.

    Article  CAS  PubMed  Google Scholar 

  12. Mukherjee PK, Chandra J, Yu C, Sun Y, Pearlman E, Ghannoum MA. Characterization of Fusarium keratitis outbreak isolates: contribution of biofilms to antimicrobial resistance and pathogenesis. Invest Ophthalmol Vis Sci. 2012;53:4450–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seyedmousavi S, Guillot J, Arné P, de Hoog GS, Mouton JW, Melchers JW, et al. Aspergillus and aspergillosis in wild and domestic animals: a global health concern with paralels to human disease. Med Mycol. 2015;53:765–97.

    Article  PubMed  Google Scholar 

  14. Ozdemir HG, Oz Y, Ilkit M, Kiraz N. Antifungal susceptibility of ocular fungal pathogens recovered from around the world against itraconazole, voriconazole, amphotericin B, and caspofungin. Med Mycol. 2012;50:130–5.

    Article  CAS  PubMed  Google Scholar 

  15. Oz Y, Ozdemir HG, Gokbolat E, Kiraz N, Ilkit M, Seyedmousavi S. In vitro antifungal susceptibility of non-fumigatus Aspergillus species isolated from patients with ocular mycoses. Mycopathologia. 2016;181:225–33.

    Article  CAS  PubMed  Google Scholar 

  16. Chakrabarti A, Nayak N, Talwar P. In vitro proteinase production by Candida species. Mycopathologia. 1991;114:163–8.

    Article  CAS  PubMed  Google Scholar 

  17. Gokce G, Cerikcioğlu N, Yagcı A. Acid proteinase, phospholipase, and biofilm production of Candida species isolated from blood cultures. Mycopathologia. 2007;164:265–9.

    Article  CAS  PubMed  Google Scholar 

  18. Price MF, Wilkinson ID, Gentry LO. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia. 1982;20:7–14.

    Article  CAS  PubMed  Google Scholar 

  19. Samaranayake LP, Raeside JM, MacFarlane TW. Factors affecting the phospholipase activity of Candida species in vitro. Sabouraudia. 1984;22:201–7.

    Article  CAS  PubMed  Google Scholar 

  20. Mohan das V, Ballal M. Proteinase and phospholipase activity as virulence factors in Candida species isolated from blood. Rev Iberoam Micol. 2008;25:208–10.

    Article  PubMed  Google Scholar 

  21. Toledo-Arana A, Valle J, Solano C, Arrizubieta MJ, Cucarella C, Lamata M, et al. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol. 2001;67:4538–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. CLSI document M38-A2. Wayne: Clinical and Laboratory Standards Institute; 2008.

    Google Scholar 

  23. Hariprasad SM, Mieler WF, Lin TK, Sponsel WE, Graybill JR. Voriconazole in the treatment of fungal eye infections: a review of current literature. Br J Ophthalmol. 2008;92:871–8.

    Article  CAS  PubMed  Google Scholar 

  24. Al-Badriyeh D, Neoh CF, Stewart K, Kong DC. Clinical utility of voriconazole eye drops in ophthalmic fungal keratitis. Clin Ophthalmol. 2010;4:391–405.

    PubMed  PubMed Central  Google Scholar 

  25. Prajna NV, Krishnan T, Mascarenhas J, Rajaraman R, Prajna L, Srinivasan M, Mycotic Ulcer Treatment Trial Group, et al. The mycotic ulcer treatment trial: a randomized trial comparing natamycin vs voriconazole. JAMA Ophthalmol. 2013;131:422–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Oechsler RA, Feilmeier MR, Miller D, Shi W, Hofling-Lima AL, Alfonso EC. Fusarium keratitis: genotyping, in vitro susceptibility and clinical outcomes. Cornea. 2013;32:667–73.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Homa M, Shobana CS, Singh YR, Manikandan P, Selvam KP, Kredics L, et al. Fusarium keratitis in South India: causative agents, their antifungal susceptibilities and a rapid identification method for the Fusarium solani species complex. Mycoses. 2013;56:501–11.

    Article  CAS  PubMed  Google Scholar 

  28. Kalavathy CM, Parmar P, Kaliamurthy J, Philip VR, Ramalingam MD, Jesudasan CA, et al. Comparison of topical itraconazole 1 % with topical natamycin 5 % for the treatment of filamentous fungal keratitis. Cornea. 2005;24:449–52.

    Article  CAS  PubMed  Google Scholar 

  29. Gajjar DU, Pal AK, Ghodadra BK, Vasavada AR. Microscopic evaluation, molecular identification, antifungal susceptibility, and clinical outcomes in Fusarium, Aspergillus, and dematiaceous keratitis. Biomed Res Int. 2013;2013:605308.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chhablani J. Fungal endophthalmitis. Expert Rev Anti Infect Ther. 2011;9:1191–201.

    Article  PubMed  Google Scholar 

  31. Kramer M, Kramer MR, Blau H, Bishara J, Axer-Siegel R, Weinberger D. Intravitreal voriconazole for the treatment of endogenous Aspergillus endophthalmitis. Ophthalmology. 2006;113:1184–6.

    Article  PubMed  Google Scholar 

  32. Thomas PA. Fungal infections of the cornea. Eye. 2003;17:852–62.

    Article  CAS  PubMed  Google Scholar 

  33. Gopinathan U, Ramakrishna T, Willcox M, Rao CM, Balasubramanian D, Kulkarni A, et al. Enzymatic, clinical and histologic evaluation of corneal tissues in experimental fungal keratitis in rabbits. Exp Eye Res. 2001;72:433–42.

    Article  CAS  PubMed  Google Scholar 

  34. Ghannoum MA. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev. 2000;13:122–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Ocular fungal isolates were provided by Havva Gül Özdemir from the CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafize Sav.

Ethics declarations

Conflict of interest

S.S. has received research and travel grants from Astellas Pharma B.V. and a travel grant from Gilead Sciences. All other authors have no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sav, H., Ozdemir, H.G., Altınbas, R. et al. Virulence Attributes and Antifungal Susceptibility Profile of Opportunistic Fungi Isolated from Ophthalmic Infections. Mycopathologia 181, 653–661 (2016). https://doi.org/10.1007/s11046-016-0018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-016-0018-3

Keywords

Navigation