Skip to main content

Advertisement

Log in

Comparison of direct collocation optimal control to trajectory optimization for parameter identification of an ellipsoidal foot–ground contact model

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Foot–ground contact models play an important role in the accuracy of predictive human gait simulations, and there is a need for a computationally-efficient dynamic contact model for predictive and evaluative studies. In this research, we generated symbolic dynamic equations for a 2D torque-driven 11-DOF human model with a 3D ellipsoidal volumetric foot–ground contact model. The main goal was to increase the prediction accuracy and decrease the computation time for human gait analyses compared to the previous studies that used numerical formulations and point foot–ground contact models.

A data-tracking optimization was developed to identify the contact parameters of the human gait model using two optimization approaches: trajectory optimization and optimal control. The first approach is developed with a global search algorithm based on inverse dynamics. In this algorithm, a local optimizer is repeatedly run from multiple potential start points to select the best start point while satisfying the constraints and reaching the lowest cost function value. The second approach is developed using direct collocation based on implicit dynamics. In this method, the optimization problem is solved using a variable-order adaptive orthogonal collocation method along with sparse nonlinear programming.

Optimal control was superior to trajectory optimization for identifying a large number of parameters; the simulated torques and ground reaction forces from the optimal control correlated better with the experimental data. For the optimal control, the root-mean-square errors of the resultant torques, tangential and normal ground reaction forces were 0.48 (N.m), 14.07 (N), and 26.44 (N), respectively. However, for the trajectory optimization, these errors were 15.19 (N.m), 36.51 (N), and 234.57 (N). Thus, the optimized contact model from the optimal control, which was developed symbolically and based on volumetric contact equations, is a suitable foot–ground contact model for predictive human gait simulations. Additionally, we demonstrated that optimal control could be used to predict the motion and torque for the metatarsal joints, which are not easily measurable in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Anderson, F.C., Pandy, M.G.: Individual muscle contributions to support in normal walking. Gait Posture 17(2), 159–169 (2003). https://doi.org/10.1016/S0966-6362(02)00073-5

    Article  Google Scholar 

  2. van den Bogert, A.J., Blana, D., Heinrich, D.: Implicit methods for efficient musculoskeletal simulation and optimal control. Proc. IUTAM 2, 297–316 (2011). https://doi.org/10.1016/J.PIUTAM.2011.04.027

    Article  Google Scholar 

  3. Bovi, G., Rabuffetti, M., Mazzoleni, P., Ferrarin, M.: A multiple-task gait analysis approach: kinematic, kinetic and EMG reference data for healthy young and adult subjects. Gait Posture 33(1), 6–13 (2011). https://doi.org/10.1016/j.gaitpost.2010.08.009

    Article  Google Scholar 

  4. Brown, P.: Contact Modelling for Forward Dynamics of Human Motion. Masters thesis, University of Waterloo (2017)

  5. Brown, P., McPhee, J.: A 3D ellipsoidal volumetric foot–ground contact model for forward dynamics. Multibody Syst. Dyn. 42(4), 447–467 (2018). https://doi.org/10.1007/s11044-017-9605-4

    Article  MathSciNet  MATH  Google Scholar 

  6. Erdemir, A., Piazza, S.J.: Changes in foot loading following plantar fasciotomy: a computer modeling study. J. Biomech. Eng. 126(2), 237 (2004). https://doi.org/10.1115/1.1691447

    Article  Google Scholar 

  7. Ezati, M., Ghannadi, B., McPhee, J.: A review of simulation methods for human movement dynamics with emphasis on gait. Multibody Syst. Dyn. 47, 265–292 (2019). https://doi.org/10.1007/s11044-019-09685-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Ezati, M., Khadiv, M., Moosavian, S.: An investigation on the usefulness of employing a two-segment foot for traversing stairs. Int. J. Humanoid Robot. 14(4), 1750027 (2017). https://doi.org/10.1142/S021984361750027X

    Article  Google Scholar 

  9. Fregly, B.J., Bei, Y., Sylvester, M.E.: Experimental evaluation of an elastic foundation model to predict contact pressures in knee replacements. J. Biomech. 36(11), 1659–1668 (2003). https://doi.org/10.1016/S0021-9290(03)00176-3

    Article  Google Scholar 

  10. Geyer, H., Herr, H.: A Muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 263–273 (2010). https://doi.org/10.1109/TNSRE.2010.2047592

    Article  Google Scholar 

  11. Ghannadi, B., Mehrabi, N., Sharif Razavian, R., McPhee, J.: Nonlinear model predictive control of an upper extremity rehabilitation robot using a two-dimensional human-robot interaction model. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 502–507. IEEE, Vancouver (2017). https://doi.org/10.1109/IROS.2017.8202200

    Chapter  Google Scholar 

  12. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theory 37(10), 1213–1239 (2002). https://doi.org/10.1016/S0094-114X(02)00045-9

    Article  MathSciNet  MATH  Google Scholar 

  13. Gonthier, Y.: Contact Dynamics Modelling for Robotic Task Simulation. PhD thesis, University of Waterloo (2007)

  14. Gonthier, Y., McPhee, J., Lange, C., Piedbœuf, J.C.: A contact modeling method based on volumetric properties. In: Volume 6: 5th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C, vol. 2005, pp. 477–486. ASME, Long Beach (2005). https://doi.org/10.1115/DETC2005-84610

    Chapter  Google Scholar 

  15. Grönqvist, R., Abeysekera, J., Gard, G., Hsiang, S.M., Leamon, T.B., Newman, D.J., Gielo-Perczak, K., Lockhart, T.E., Pai, C.Y.: Human-centred approaches in slipperiness measurement. In: Ergonomics, vol. 44, pp. 1167–1199. Taylor & Francis, London (2001). https://doi.org/10.1080/00140130110085556

    Chapter  Google Scholar 

  16. Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 42(2), 440 (1975). https://doi.org/10.1115/1.3423596

    Article  Google Scholar 

  17. Koenraadt, K.L., Stolwijk, N.M., van den Wildenberg, D., Duysens, J., Keijsers, N.L.: Effect of a metatarsal pad on the fore-foot during gait. J. Am. Podiatr. Med. Assoc. 102(1), 18–24 (2012). https://doi.org/10.7547/1020018

    Article  Google Scholar 

  18. Leardini, A., Benedetti, M.G., Berti, L., Bettinelli, D., Nativo, R., Giannini, S.: Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait Posture 25(3), 453–462 (2007). https://doi.org/10.1016/j.gaitpost.2006.05.017

    Article  Google Scholar 

  19. Lim, Y.P., Lin, Y.C., Pandy, M.G.: Effects of step length and step frequency on lower-limb muscle function in human gait. J. Biomech. 57, 1–7 (2017). https://doi.org/10.1016/j.jbiomech.2017.03.004

    Article  Google Scholar 

  20. Lin, Y.C., Haftka, R.T., Queipo, N.V., Fregly, B.J.: Surrogate articular contact models for computationally efficient multibody dynamic simulations. Med. Eng. Phys. 32(6), 584–594 (2010). https://doi.org/10.1016/j.medengphy.2010.02.008

    Article  Google Scholar 

  21. Lin, Y.C., Kim, H.J., Pandy, M.G.: A computationally efficient method for assessing muscle function during human locomotion. Int. J. Numer. Methods Biomed. Eng. 27(3), 436–449 (2011). https://doi.org/10.1002/cnm.1396

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin, Y.C., Pandy, M.G.: Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation. J. Biomech. 59, 1–8 (2017). https://doi.org/10.1016/j.jbiomech.2017.04.038

    Article  Google Scholar 

  23. Lin, Y.C., Walter, J.P., Pandy, M.G.: Predictive simulations of neuromuscular coordination and joint-contact loading in human gait. Ann. Biomed. Eng. 46(8), 1216–1227 (2018). https://doi.org/10.1007/s10439-018-2026-6

    Article  Google Scholar 

  24. Lopes, D.S., Neptune, R.R., Ambrósio, J.A., Silva, M.T.: A superellipsoid-plane model for simulating foot–ground contact during human gait. Comput. Methods Biomech. Biomed. Eng. 19(9), 954–963 (2016). https://doi.org/10.1080/10255842.2015.1081181

    Article  Google Scholar 

  25. Mclaughlin, T., Zourntos, T.: Using Fourier analysis to generate believable gait patterns for virtual quadrupeds. Masters thesis, Texas A&M University (2013)

  26. McPhee, J., Wells, C.: Automated symbolic analysis of mechanical system dynamics. MapleTech 3, 48–56 (1996)

    Google Scholar 

  27. Meyer, A.J., Eskinazi, I., Jackson, J.N., Rao, A.V., Patten, C., Fregly, B.J.: Muscle synergies facilitate computational prediction of subject-specific walking motions. Front. Bioeng. Biotechnol. 4, 77 (2016). https://doi.org/10.3389/fbioe.2016.00077

    Article  Google Scholar 

  28. Millard, M., McPhee, J., Kubica, E.: Multi-step forward dynamic gait simulation. In: Bottasso, C.L. (ed.) Multibody Dynamics, pp. 25–43. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-8829-2_2

    Chapter  Google Scholar 

  29. Miller, R.H.: A comparison of muscle energy models for simulating human walking in three dimensions. J. Biomech. 47(6), 1373–1381 (2014). https://doi.org/10.1016/j.jbiomech.2014.01.049

    Article  Google Scholar 

  30. Mouzo, F., Lugris, U., Pamies Vila, R., Font Llagunes, J.M., Cuadrado Aranda, J.: Underactuated approach for the control-based forward dynamic analysis of acquired gait motions. In: Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, pp. 1092–1100 (2015)

    Google Scholar 

  31. Neptune, R.R., Wright, I.C., van den Bogert, A.J.: A method for numerical simulation of single limb ground contact events: application to heel–toe running. Comput. Methods Biomech. Biomed. Eng. 3(4), 321–334 (2000). https://doi.org/10.1080/10255840008915275

    Article  Google Scholar 

  32. Patterson, M.A., Rao, A.V.: GPOPS-II. ACM Trans. Math. Softw. 41(1), 1–37 (2014). https://doi.org/10.1145/2558904

    Article  Google Scholar 

  33. Peasgood, M., Kubica, E., McPhee, J.: Stabilization of a dynamic walking gait simulation. J. Comput. Nonlinear Dyn. 2(1), 65 (2007). https://doi.org/10.1115/1.2389230

    Article  Google Scholar 

  34. Porsa, S., Lin, Y.C., Pandy, M.G.: Direct methods for predicting movement biomechanics based upon optimal control theory with implementation in OpenSim. Ann. Biomed. Eng. 44(8), 2542–2557 (2016). https://doi.org/10.1007/s10439-015-1538-6

    Article  Google Scholar 

  35. Rao, A.V.: A survey of numerical methods for optimal control. Adv. Astronaut. Sci. 135(1), 497–528 (2009). https://doi.org/10.1515/jnum-2014-0003

    Article  Google Scholar 

  36. Sandhu, S.S., McPhee, J.: A two-dimensional nonlinear volumetric foot contact model. In: Volume 2: Biomedical and Biotechnology Engineering, pp. 703–710. ASME, Vancouver (2010). https://doi.org/10.1115/IMECE2010-39464

    Chapter  Google Scholar 

  37. Sharif Shourijeh, M.: Optimal Control and Multibody Dynamic Modelling of Human Musculoskeletal Systems (2013)

    Google Scholar 

  38. Sharif Shourijeh, M., McPhee, J.: Forward dynamic optimization of human gait simulations: a global parameterization approach. J. Comput. Nonlinear Dyn. 9(3), 031,018 (2014). https://doi.org/10.1115/1.4026266

    Article  Google Scholar 

  39. Shourijeh, M.S., McPhee, J.: Foot–ground contact modeling within human gait simulations: from Kelvin–Voigt to hyper-volumetric models. Multibody Syst. Dyn. 35(4), 393–407 (2015). https://doi.org/10.1007/s11044-015-9467-6

    Article  MathSciNet  MATH  Google Scholar 

  40. Silva, M., Freitas, B., Andrade, R., Carvalho, Ó., Renjewski, D., Flores, P., Espregueira-Mendes, J.: Current perspectives on the biomechanical modelling of the human lower limb: a systematic review. Arch. Comput. Methods Eng. (2020). https://doi.org/10.1007/s11831-019-09393-1

    Article  Google Scholar 

  41. Smith, C.R., Vignos, M.F., Lenhart, R.L., Kaiser, J., Thelen, D.G.: The influence of component alignment and ligament properties on tibiofemoral contact forces in total knee replacement. J. Biomech. Eng. 138(2), 021,017 (2016). https://doi.org/10.1115/1.4032464

    Article  Google Scholar 

  42. Sun, J., Voglewede, P.A.: Dynamic simulation of human gait using a combination of model predictive and PID control. In: Volume 6: 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, p. V006T10A008. ASME, Buffalo (2014). https://doi.org/10.1115/DETC2014-35582

    Chapter  Google Scholar 

  43. Sun, J., Wu, S., Voglewede, P.A.: Dynamic simulation of human gait model with predictive capability. J. Biomech. Eng. 140(3), 031,008 (2018). https://doi.org/10.1115/1.4038739

    Article  Google Scholar 

  44. Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J., Martí, R.: Scatter search and local NLP solvers: a multistart framework for global optimization. INFORMS J. Comput. 19(3), 328–340 (2007). https://doi.org/10.1287/ijoc.1060.0175

    Article  MathSciNet  MATH  Google Scholar 

  45. Umberger, B.R.: Effects of suppressing arm swing on kinematics, kinetics, and energetics of human walking. J. Biomech. 41(11), 2575–2580 (2008). https://doi.org/10.1016/j.jbiomech.2008.05.024

    Article  Google Scholar 

  46. Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley, New York (2009)

    Book  Google Scholar 

  47. Zmitrowicz, A.: Contact stresses: a short survey of models and methods of computations. Arch. Appl. Mech. 80(12), 1407–1428 (2010). https://doi.org/10.1007/s00419-009-0390-2

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Sciences and Engineering Research Council of Canada and the Canada Research Chairs program. Special thanks to Marco Rabuffetti and Maurizio Ferrarin from Polo Tecnologico, IRCCS S. Maria Nascente, Fondazione Don C. Gnocchi, Italy, for providing us with their gait experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdokht Ezati.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezati, M., Brown, P., Ghannadi, B. et al. Comparison of direct collocation optimal control to trajectory optimization for parameter identification of an ellipsoidal foot–ground contact model. Multibody Syst Dyn 49, 71–93 (2020). https://doi.org/10.1007/s11044-020-09731-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09731-3

Keywords

Navigation